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Symmetry in Nature

Johannes Kepler, On the Six-Cornered Snowflake, 1611:
six-fold rotational symmetry of snowflakes, role of symmetry
in human perception and the arts, fundamental importance
of symmetry in the laws of physics.
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Broken Symmetry in Nature

The Angora cat originated in the Turkish city of Ankara. It is
admired for its long silky coat and quiet graceful charm. It is
often bred to favour a pale milky colouring, as well as one
blue and one amber eye. (Turkish Daily News, 14 Oct 2001)
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The Future?
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Value Symmetry

Example (Map colouring)
Use n colours to paint the countries of a map such that no
two neighbour countries have the same colour.
A model assigning colours (as values) to the countries (as
decision variables) has n! value symmetries because any
permutation of the colours of a (non-)solution transforms
that solution into another (non-)solution: the values (the
colours) are not distinguished. Solution 1 Solution 2

Example (Partitioned Map Colouring)
The available colours are partitioned into subsets, such that
only colours of the same subset are not distinguished.

Solution 1 Solution 2
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Variable Symmetry

Example (Subsets)
Suppose an n-element subset of a given set has to be
found, subject to some constraints.
A model encoding the subset as an array of n distinct
decision variables has n! variable symmetries because the
order of the elements does not matter in a set, but does
matter in an array. Solution 1 Solution 2

Careful: symmetries can be introduced!
Contrary to the first two examples, the symmetries
identified in the third example are not symmetries of the
problem itself, but symmetries of the model of the problem.
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Definitions

Definition (Symmetry; also see Cohen et al., CP’05)
A symmetry is a permutation of values or decision variables
(or both) that preserves (non-)solutions.

Symmetries form a group:
The inverse of a symmetry is a symmetry.
The identity permutation is a symmetry.
The composition of two symmetries is a symmetry.

(Computational) group theory is the way to study symmetry.

Difficulty
A solver may waste a lot of effort exploring symmetric
(partial) assignments, be they (partial) solutions or not.
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The Sport Scheduling Problem (SSP)

Example (SSP: the problem)
Find schedule in Periods ×Weeks → Teams × Teams for:

|Teams| = n

|Weeks| = n − 1

|Periods| = n/2

subject to the following constraints:
1 Each team plays exactly once against each other team.

2 Each team plays exactly once per week.

3 Each team plays at most twice per period.

Intuitive idea for a matrix model and a solution for n = 8:
Wk 1 Wk 2 Wk 3 Wk 4 Wk 5 Wk 6 Wk 7

P 1 1 vs. 2 1 vs. 3 2 vs. 6 3 vs. 5 4 vs. 7 4 vs. 8 5 vs. 8
P 2 3 vs. 4 2 vs. 8 1 vs. 7 6 vs. 7 6 vs. 8 2 vs. 5 1 vs. 4
P 3 5 vs. 6 4 vs. 6 3 vs. 8 1 vs. 8 1 vs. 5 3 vs. 7 2 vs. 7
P 4 7 vs. 8 5 vs. 7 4 vs. 5 2 vs. 4 2 vs. 3 1 vs. 6 3 vs. 6
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The Sport Scheduling Problem (SSP)

Example (SSP: the symmetries)
Observation: The periods, weeks, and teams of a sport
schedule are not distinguished:

Wk 1 Wk 2 Wk 3 Wk 4 Wk 5 Wk 6 Wk 7
P 1 1 vs. 2 1 vs. 3 2 vs. 6 3 vs. 5 4 vs. 7 4 vs. 8 5 vs. 8
P 2 3 vs. 4 2 vs. 8 1 vs. 7 6 vs. 7 6 vs. 8 2 vs. 5 1 vs. 4
P 3 5 vs. 6 4 vs. 6 3 vs. 8 1 vs. 8 1 vs. 5 3 vs. 7 2 vs. 7
P 4 7 vs. 8 5 vs. 7 4 vs. 5 2 vs. 4 2 vs. 3 1 vs. 6 3 vs. 6

The periods/rows can be permuted (4! variable syms).
The weeks/columns can be permuted (7! var syms).
The teams of a game can be permuted (2!28 var syms).
The team names can be permuted (8! value syms).

All these permutations do not affect whether any given
(partial) assignment is a (partial) solution or not.
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The Social Golfer Problem (SGP)

Example (SGP: the problem)
Find schedule in Weeks ×Groups × Slots → Golfers for:
|Weeks| = w
|Groups| = g
|Slots| = s
|Golfers| = g · s

subject to the following constraint:
1 Any two golfers play at most once in the same group.

Idea for matrix model and a solution for 〈w ,g, s〉 = 〈4,4,3〉:
Group 1 Group 2 Group 3 Group 4

Week 1 [1, 2, 3] [4, 5, 6] [7, 8, 9] [10, 11, 12]
Week 2 [1, 4, 7] [2, 5, 10] [3, 8, 11] [6, 9, 12]
Week 3 [1, 8, 10] [2, 4, 12] [3, 5, 9] [6, 7, 11]
Week 4 [1, 9, 11] [2, 6, 8] [3, 4, 10] [5, 7, 12]
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The Social Golfer Problem (SGP)

Example (SGP: the symmetries)
Observation: The weeks, groups, slots, and golfers of a
social golfer schedule are not distinguished:

Group 1 Group 2 Group 3 Group 4
Week 1 [1, 2, 3] [4, 5, 6] [7, 8, 9] [10, 11, 12]
Week 2 [1, 4, 7] [2, 5, 10] [3, 8, 11] [6, 9, 12]
Week 3 [1, 8, 10] [2, 4, 12] [3, 5, 9] [6, 7, 11]
Week 4 [1, 9, 11] [2, 6, 8] [3, 4, 10] [5, 7, 12]

The weeks/rows can be permuted (4! variable symmetries).

The groups/col.s can be permuted within a week (4!4 var syms).

The slots of a group can be permuted (3!16 variable symmetries).

The golfer names can be permuted (12! value symmetries).

All these permutations do not affect whether any given
(partial) assignment is a (partial) solution or not.
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Terminology, for Variables and Values

Definition (Special cases of symmetry)
Full symmetry: any permutation (i.e., bijection)
preserves solutions. The full symmetry group Sn has
n! symmetries over a sequence of n elements.
Partial symmetry: any piecewise permutation
preserves solutions.
Examples: weekdays vs weekend; same-size boats.
Wreath symmetry: any wreath permutation preserves
solutions. Example: the composition of the first two
variable symmetries of the social golfer problem.
Rotation symmetry: any rotation preserves solutions.
The cyclic symmetry group Cn has n symmetries over
a sequence of n elements.
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Terminology (continued)

Definition (Special cases of symmetry, continued)
Index symmetry: any permutation of slices of a matrix
of decision variables preserves solutions:
full / partial row symmetry, column symmetry, . . .
Conditional / dynamic symmetry: a symmetry that
appears while solving a problem. Example: after a few
decisions, warehouses of initially different capacities
may have the same remaining capacity. (Conditional
symmetries are beyond the scope of this lecture.)

Careful: symmetries multiply up!
If there is row and column symmetry in an m × n matrix
(i.e., if there are m! row syms and n! column syms),
then there are m! + n! m! · n! compositions of symmetries.
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Challenges Raised by Symmetries

Definition (Symmetry handling)
Detecting the symmetries of the problem (in a model)
as well as the symmetries introduced when modelling.
Breaking (better: exploiting) the detected symmetries,
so that less search effort is spent.

Scope of lecture
This lecture is about symmetry breaking when solving
combinatorial problems by systematic search that is
interleaved with inference (here: propagation).
When solving combinatorial problems by local search,
the idea is often rather to exploit the presence of any
symmetries by doing nothing, rather than by making
the search space smaller.
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Classification of Symmetry Breaking

Definition (Symmetry equivalence class)
A symmetry class is an equivalence class of assignments
under all the symmetries (including their compositions).

In each symmetry class, visit (at least) one member during
search, as this may make a problem “more tractable”:

Symmetry breaking by reformulation:
elimination of the symmetries detected in a model.
Static symmetry breaking:
already when posting the problem constraints.
Dynamic symmetry breaking: during search only.

Careful: risky combination of SB methods!
Symmetry-breaking methods rarely combine without losing
symmetry classes (and hence solutions).
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Classification of Symmetry Breaking

Definition (Structural symmetry breaking)
Structural symmetry breaking is about exploiting the
combinatorial structure of a problem (as well as the key
strengths of CP, namely global constraints if not search
procedures) toward eliminating, ideally in polynomial time
and space, all symmetric sub-trees at every node explored
(even if there are exponentially many symmetries).

Careful: size does not matter!
A number of symmetries is no indicator of the difficulty of
breaking them! For example, consider variable symmetry:

The full group Sn has n! easily broken syms. Solution 2

The cyclic group Cn has only n symmetries,
which are much more difficult to break. Solution 1
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Symmetry Breaking by Reformulation

Example (The sport scheduling problem)
Let the domain of the decision variables of an n

2 × n matrix
be {(f − 1) · n + s | 1 ≤ f < s ≤ n}: the game between
teams f and s is uniquely identified by (f − 1) · n + s.
A round-robin schedule breaks many of the other syms:

Fix the games of the first week to the set
{(1,2)} ∪ {(t + 1,n + 2− t) | 1 < t ≤ n/2}
For the other weeks, transform each (f , s) into (f ′, s′):

f ′ =


1 if f = 1
2 if f = n
f + 1 otherwise

, and s′ =

{
2 if s = n
s + 1 otherwise

Determine the period of each game, but not its week!
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Symmetry Breaking by Reformulation

Example (The social golfer problem)
Break the slot symmetries within each group by switching
from the 3D w × g × s matrix of scalar decision variables:

Group 1 Group 2 Group 3 Group 4
Week 1 [1, 2, 3] [4, 5, 6] [7, 8, 9] [10, 11, 12]
Week 2 [1, 4, 7] [2, 5, 10] [3, 8, 11] [6, 9, 12]
Week 3 [1, 8, 10] [2, 4, 12] [3, 5, 9] [6, 7, 11]
Week 4 [1, 9, 11] [2, 6, 8] [3, 4, 10] [5, 7, 12]

to a 2D w × g matrix of set decision variables:
Group 1 Group 2 Group 3 Group 4

Week 1 {1, 2, 3} {4, 5, 6} {7, 8, 9} {10, 11, 12}
Week 2 {1, 4, 7} {2, 5, 10} {3, 8, 11} { 6, 9, 12}
Week 3 {1, 8, 10} {2, 4, 12} {3, 5, 9} { 6, 7, 11}
Week 4 {1, 9, 11} {2, 6, 8} {3, 4, 10} { 5, 7, 12}

and adding the constraints that all sets must be of size g.
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Dynamic Symmetry Breaking (DSB)

Definition (Dynamic symmetry breaking)
DSB = no addition of constraints to the problem model

Classification
Via the addition of constraints by the search procedure.
Via a problem-specific search procedure.

Benefit
No interference with dynamic variable / value orderings,
especially problem-specific ones!
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State of the Art

Two dual approaches, with large bodies of research:
Symmetry breaking during search (SBDS, . . . ):
after finding a no-good node in the search tree, add
constraints preventing its symmetric nodes from being
visited in the future.
Symmetry breaking by dominance detection (SBDD,
GCF, . . . ): before expanding a node, check whether a
symmetric node thereof has been visited in the past.

The SBD? schemes are general and may take exponential
time or space if there are exponentially many symmetries
(and are beyond the scope of this lecture). Hence:

Dynamic structural symmetry breaking (DSSB): exploit
the combinatorial structure of the problem for designing
a symmetry-free search procedure (in SBDD style).
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Dynamic Structural Symmetry Breaking

Example (Map colouring: full value symmetry)
Consider two symmetric partial assignments:

{Portugal 7→ green,Spain 7→ blue,France 7→ green}

{Portugal 7→ blue,Spain 7→ red ,France 7→ blue}

Not the values, but the clustering of the variables matters!
Compact representation, using (new) global constraints:

allEqual(Portugal ,France) & allEqual(Spain) &
allDifferent(Portugal ,Spain)

This is an abstract no-good, based on one representative
var in an allDifferent constraint for each symmetry class.
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Dynamic Structural Symmetry Breaking

Example (Map colouring: symmetry-free search)
Given a partial colouring with u colours, only u + 1 colours
need to be considered for the next country c:

Colour c with one of the u already used colours.
Colour c with an arbitrary unused colour (if any left).

In practice: The already used colours are the first u colours,
say 1..u, so that the new colour to be considered is u + 1.
This breaks all the n! value symmetries in constant time
and constant space overhead at every node explored!
We say that it takes constant amortised time & space.

Applications (Van Hentenryck [& Michel])
Scene allocation (INFORMS J. of Computing, 2002)
Steel mill slab design (CPAIOR’08)
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Partial Value Symmetry (IJCAI’03)

Example (Partial value symmetry)
Weekdays vs the weekend days; same-capacity boats.

Abstract no-goods
Let D = D1 ∪ D2 ∪ · · · ∪ Dm be the domain of the variables,
where the values in each set Di are fully interchangeable
(full value sym for m = 1): variable clustering for each Di .

Search procedure: constant amortised time & space
In each set Di , only the values already used and one so far
unused value need to be tried.

Application (Michel, . . . , Van Hentenryck, CPAIOR’08)
Eventually-serialisable data service deployment
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Wreath Value Symmetry (IJCAI’03)

Example (Wreath value symmetry)
Schedule meetings in (day, room) pairs,
where the days are interchangeable,
and the rooms are interchangeable within each day:

<2,2>

<1,1>

<1,2>

<2,1>

<1,1>

<1,2>

<2,1>

<2,2> <2,2>

<1,1>

<1,2>

<2,1>

<1,1>

<1,2>

<2,1>

<2,2>

Wreath permutation Not a wreath permutation!
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Wreath Value Symmetry (IJCAI’03)

Abstract no-goods
Let D = D1 × D2 be the domain of the decision variables,
where the values in each set Di are fully interchangeable
(full value sym for |D2| = 1): one abstract no-good on D1,
and m abstract no-goods on D2 when m values of D1 are
used, with variable clustering as for full value symmetry.

Search procedure: constant amortised time & space
1 For the first value component, in set D1, only the

values already used and one so far unused value need
to be tried. Let d1 ∈ D1 be the chosen value.

2 For the second value component, in set D2, only the
values already used with d1 and one so far unused
value need to be tried.
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Selected Other DSSB Results

Consider a combinatorial problem with n decision variables
over a domain of k values:

Generalisation to any value symmetry:
group equivalence (GE) trees
(Roney-Dougal et al., ECAI’04)
+ O(n4) time overhead at every node explored.
Partial variable symmetry + partial value symmetry
(Sellmann & Van Hentenryck, IJCAI’05)
+ O(k2.5 + n · k) time at every node explored.
+ Coinage of the term structural symmetry breaking.
+ Can be specialised for full variable symmetry only.
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Tractability of DSSB: State of the Art

variable symmetry
none full partial wreath

va
lu

e
sy

m
m

et
ry

none P P P scalar problem
P P P set problem

full P P P NP scalar problem
P NP NP NP set problem

partial P P P NP scalar problem
P NP NP NP set problem

wreath P P P NP scalar problem
P NP NP NP set problem

any P scalar problem
set problem

P: All symmetric sub-trees can be eliminated, say by DSSB, with
a polynomial time & space overhead at every node explored.

NP: Dominance-detection schemes (in SBDD style) are NP-hard.
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In Mathematics: Combinatorial Generation

The listing, ranking, unranking, and random selection of
objects of some combinatorial structure (combination,
partition, permutation, subset, tree, etc) w.r.t. some order:

Constant amortised time (CAT): in time proportional to
the number of objects listed (after some initialisations).
Backtracking ensuring success at terminals (BEST):
every leaf of the backtracking tree is a desired object.
Loopless: the next object is constructed without
executing any loop.
Memoryless: the next object is constructed without
using any global variables (can start from any object).
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Combinatorial Objects

Consider sequences of n = 3 variables over k = 2 values:

unlabelled unlabelled
tuples tuples necklaces necklaces
000 000 000 000
001 001 001 001
010 010
011 011 011
100
101
110
111 111
no full value rotation variable rot var + full val

symmetry symmetry symmetry symmetry
Sk on values Cn on variables Cn × Sk
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Combinatorial Objects

Consider sequences of n = 3 variables over k = 2 values:

unlabelled unlabelled
tuples tuples necklaces necklaces
000 000 000 000
001 001 001 001
010 010
011 011 011 011
100
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110
111 111
no full value rotation variable rot var + full val

symmetry symmetry symmetry symmetry
Sk on values Cn on variables Cn × Sk
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Combinatorial Generation

Algorithm: full value symmetry (Er, Computer J. 1988)
procedure list(j ,u : integer) {u = the largest used value}
var i : integer
if j > n then

return true {all sym broken at all nodes!}
else

try all i = 0 to min(u + 1,k − 1) do
X [ j ]← i ;
list(j + 1,max(i ,u))

Initial call: list(1,−1)
Complexity: Constant amortised time & space:

#objects = #unlabelled tuples

Property: Lexicographic enumeration (by var & val orders)
5 – 6 May 2010 ACP Summer School 2010 - 34 - Pierre Flener



Prelude

Symmetry
Breaking
Dynamic Symmetry
Breaking

Static Symmetry
Breaking

Symmetry
Detection
Static Symmetry
Detection

Dynamic Symmetry
Detection

Postlude

Combinatorial Generation

Algo: rot var sym (Ruskey & Sawada, COCOON’00)
procedure list(j ,p : integer) {p = #positions to replicate}
var i : integer
if j > n then

return n mod p = 0 {not all sym broken at all nodes!}
else

try all i = X [j − p] to k − 1 do
X [ j ]← i ;
list(j + 1, if i = X [j − p] then p else j)

Initial call: X [0]← 0; list(1,1), where X [0] is a dummy var
Complexity: Constant amortised time & space:

#objects ≤ #necklaces · (k/(k − 1))2

Property: Lexicographic enumeration (by var & val orders)
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Useful Constraints: Lexicographic Ordering

Example
[C,o,n, s, t , r ,a, i ,n, t ] ≤lex [C,o,n, s, t , r ,u, c, t , s]
because letter ‘a’ precedes ‘u’ in the Latin alphabet.
[1,2,34,5,678] ≤lex [1,2,36,45,78]
because 34 ≤ 36 among the natural numbers.

Definition (Lexicographic order)
A sequence X = [x1, . . . , xn] is lexicographically at most a
sequence Y = [y1, . . . , yn] of the same type T and the
same size n, which is denoted by X ≤lex Y , if and only if:

either n = 0
or x1 <T y1

or x1 =

T

y1 and [x2, . . . , xn] ≤lex [y2, . . . , yn]
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Static Symmetry Breaking (SSB)

Definition (Static symmetry breaking)
SSB = addition of ordering constraints to the problem model

Classification
Lex-leader scheme (Crawford et al., KR’96):
post a ≤lex ordering constraint for each symmetry.

The lex-leader scheme is general and may take exponential
space if there are exponentially many symmetries. Hence:

Static structural symmetry breaking (SSSB): exploit the
combinatorial structure of the problem for posting fewer
(not necessarily ≤lex ) symmetry-breaking constraints.

Careful
Potential interference with dynamic var / val orderings!
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Static Symmetry Breaking

Lexicographic ordering along one dimension of a matrix
breaks all the index symmetries of that dimension.

Example (The sport scheduling problem)

Breaking all the variable symmetries of the n
2 × n matrix:

Each row is lexicographically at most the next, if any.
Each col. is lexicographically at most the next, if any.
The first team of each game has a smaller number
than the second team of the game (this constraint can
also be enforced by a suitable definition of the domain of the
decision variables).

This breaks all the variable symmetries in this case,
because the matrix values are all different.
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Static Symmetry Breaking

When lexicographically ordering a matrix along every
dimension with index symmetry:

No symmetry class is of size 0.
However, in general, not all sym classes are of size 1,
except if all the matrix values are different, etc.

Counterexample
Symmetric matrices with lex ordered rows and columns:

0 1

0

0

1

1

0 1

1

0

0

1

Swap the columns

Swap row 1 and 3
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The Lex-Leader Scheme

Construction of lex-leader constraints
For any group G of variable symmetries on decision
variables {x1, . . . , xn} of domain / type T :

1 Choose a variable ordering, say 〈x1, . . . , xn〉.
2 Choose a total value ordering on T , say ≤T .
3 Choose a lexicographic order induced by ≤T , say ≤lex .
4 For every symmetry σ ∈ G, add the constraint

[x1, . . . , xn] ≤lex [xσ(1), . . . , xσ(n)]

to the problem model.
5 Simplify the resulting constraints, locally and globally.

This yields exactly one solution per symmetry class.
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The Lex-Leader Scheme

Example (Row & column symmetry on a 2× 3 matrix)

The group of row & column symmetries of
(

x1 x2 x3
x4 x5 x6

)
can be generated by 3 permutations (of the first two
columns, of the last two columns, and of the two rows):

(1,2)(4,5) (2,3)(5,6) (1,4)(2,5)(3,6)

This group contains the following 12 permutations:

() (1,2)(4,5) (2,3)(5,6)
(1,4)(2,5)(3,6) (1,6,2,4,3,5) (1,5,3,4,2,6)
(1,4)(2,6)(3,5) (1,5)(2,4)(3,6) (1,6)(2,5)(3,4)

(1,3)(4,6) (1,2,3)(4,5,6) (1,3,2)(4,6,5)

Symmetry {x1 7→ x2, x2 7→ x3, x3 7→ x1, x4 7→ x5, x5 7→ x4}
is here denoted by the the cycle notation (1,2,3)(4,5).
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The Lex-Leader Scheme

Example (2× 3 matrix, continued)

Simplified

Constraints for var ordering 〈x1, x2, x3, x4, x5, x6〉:

[x1, x2, x3, x4, x5, x6] ≤lex [x2, x1, x3, x5, x4, x6]

[x1, x2, x3, x4, x5, x6] ≤lex [x1, x3, x2, x4, x6, x5]

[x1, x2, x3, x4, x5, x6] ≤lex [x4, x5, x6, x1, x2, x3]

[x1, x2, x3, x4, x5, x6] ≤lex [x6, x4, x5, x3, x1, x2]

[x1, x2, x3, x4, x5, x6] ≤lex [x5, x6, x4, x2, x3, x1]

[x1, x2, x3, x4, x5, x6] ≤lex [x4, x6, x5, x1, x3, x2]

[x1, x2, x3, x4, x5, x6] ≤lex [x5, x4, x6, x2, x1, x3]

[x1, x2, x3, x4, x5, x6] ≤lex [x6, x5, x4, x3, x2, x1]

[x1, x2, x3, x4, x5, x6] ≤lex [x3, x2, x1, x6, x5, x4]

[x1, x2, x3, x4, x5, x6] ≤lex [x2, x3, x1, x5, x6, x4]

[x1, x2, x3, x4, x5, x6] ≤lex [x3, x1, x2, x6, x4, x5]
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The Lex-Leader Scheme

Example (2× 3 matrix, continued)
Simplified constraints for var ordering 〈x1, x2, x3, x4, x5, x6〉:

[x1, x2, x3, x4, x5, x6] ≤lex [x2, x1, x3, x5, x4, x6]

[x1, x2, x3, x4, x5, x6] ≤lex [x1, x3, x2, x4, x6, x5]

[x1, x2, x3, x4, x5, x6] ≤lex [x4, x5, x6, x1, x2, x3]

[x1, x2, x3, x4, x5, x6] ≤lex [x6, x4, x5, x3, x1, x2]

[x1, x2, x3, x4, x5, x6] ≤lex [x5, x6, x4, x2, x3, x1]

[x1, x2, x3, x4, x5, x6] ≤lex [x4, x6, x5, x1, x3, x2]

[x1, x2, x3, x4, x5, x6] ≤lex [x5, x4, x6, x2, x1, x3]

[x1, x2, x3, x4, x5, x6] ≤lex [x6, x5, x4, x3, x2, x1]

[x1, x2, x3, x4, x5, x6] ≤lex [x3, x2, x1, x6, x5, x4]

[x1, x2, x3, x4, x5, x6] ≤lex [x2, x3, x1, x5, x6, x4]

[x1, x2, x3, x4, x5, x6] ≤lex [x3, x1, x2, x6, x4, x5]
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The Lex-Leader Scheme

Example (Full variable symmetry)

For the n! symmetries of the full symmetry group Sn,
the n! n-ary ≤lex constraints (over lists of length n) simplify
into n − 1 binary ≤ constraints (over scalars):

x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ xn

In practice
Breaking all the symmetries will reduce the search effort,
but at the expense of increased propagation effort:

Break only some symmetries, but which ones?
Double-lex (lex2) often works well: pick the symmetries
that swap adjacent rows or columns of a 2D matrix with
full row & column symmetry. Example
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The Lex-Leader Scheme

Adaptation for value symmetries (Walsh, CP’06)
For any group G of value symmetries on decision variables
{x1, . . . , xn} of domain / type T :

1 Choose a variable ordering, say 〈x1, . . . , xn〉.
2 Choose a total value ordering on T , say ≤T .
3 Choose a lexicographic order induced by ≤T , say ≤lex .
4 For every symmetry σ ∈ G, add the constraint

[x1, . . . , xn] ≤lex [σ(x1), . . . , σ(xn)]

to the problem model.
This yields exactly one solution per symmetry class.
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Static Structural Symmetry Breaking

Example (Full / partial value sym; Law & Lee, CP’04)
Consider decision variables X in domain D = 0, . . . , k − 1.
Full value symmetry-breaking constraints:
The first occurrences of the domain values are ordered:

firstPos(0,X ) < firstPos(1,X ) < · · · < firstPos(k − 1,X )

Global constraint for the conjunction of these constraints:

intValuePrecedeChain(X ,D)

Partial value symmetry over domain D = D1 ∪D2 ∪ · · · ∪Dm:

m∧
i=1

intValuePrecedeChain(X ,Di)

5 – 6 May 2010 ACP Summer School 2010 - 46 - Pierre Flener



Prelude

Symmetry
Breaking
Dynamic Symmetry
Breaking

Static Symmetry
Breaking

Symmetry
Detection
Static Symmetry
Detection

Dynamic Symmetry
Detection

Postlude

Static Structural Symmetry Breaking

Example (Partial variable sym + full value sym; CP’06)
Make study groups for two sets of five indistinguishable
students each. There are six indistinguishable tables.
The decision variables {f1, . . . , f5} ∪ {m6, . . . ,m10}
correspond to the students and are to be assigned
table values from the ordered domain {t1, . . . , t6}.
Constraints breaking the variable symmetries:

f1 ≤ f2 ≤ f3 ≤ f4 ≤ f5 & m6 ≤ m7 ≤ m8 ≤ m9 ≤ m10

Constraints computing the signatures (counter pairs):

cardinality([f1, . . . , f5], [t1, . . . , t6], [cf
1, . . . , c

f
6]) &

cardinality([m6, . . . ,m10], [t1, . . . , t6], [cm
1 , . . . , cm

6 ])

Constraints breaking the value symmetries:

[cf
1, c

m
1 ] ≥lex · · · ≥lex [cf

6, c
m
6 ]
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Static Structural Symmetry Breaking

Example (Partial variable sym + full value sym; CP’06)
Consider the satisfying assignment

{f1 7→ t1, f2 7→ t1, f3 7→ t2, f4 7→ t3, f5 7→ t4,
m6 7→ t1,m7 7→ t2,m8 7→ t2,m9 7→ t3,m10 7→ t5}.

Indeed, the variable-symmetry constraints are satisfied:

f1 ≤ f2 ≤ f3 ≤ f4 ≤ f5 & m6 ≤ m7 ≤ m8 ≤ m9 ≤ m10

and the value-symmetry constraints are satisfied:

[2,1] ≥lex [1,2] ≥lex [1,1] ≥lex [1,0] ≥lex [0,1] ≥lex [0,0]

Note that a pointwise ordering would not have sufficed.
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Static Structural Symmetry Breaking

Example (Partial variable sym + full value sym; CP’06)
If student m10 moves from table t5 to table t6, producing a
symmetrically equivalent assignment because the tables
are fully interchangeable:

{f1 7→ t1, f2 7→ t1, f3 7→ t2, f4 7→ t3, f5 7→ t4,
m6 7→ t1,m7 7→ t2,m8 7→ t2,m9 7→ t3,m10 7→ t6}

then the value-symmetry constraints are violated:

[2,1] ≥lex [1,2] ≥lex [1,1] ≥lex [1,0] ≥lex [0,0] 6≥lex [0,1]
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Static Structural Symmetry Breaking

Example (Partial variable sym + full value sym; CP’06)
If students m9 and m10 swap their assigned tables,
producing a symmetrically equivalent assignment because
both students are male:

{f1 7→ t1, f2 7→ t1, f3 7→ t2, f4 7→ t3, f5 7→ t4,
m6 7→ t1,m7 7→ t2,m8 7→ t2,m9 7→ t5,m10 7→ t3}

then the signatures do not change and hence the
value-symmetry constraints remain satisfied, but the
variable-symmetry constraints are violated, because

m6 ≤ m7 ≤ m8 ≤ m9 6≤ m10
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Selected Other SSSB Results (CP’06)

Consider a combinatorial problem with n decision variables
over a domain of k = ` ·m values:

Partial variable symmetry + partial value symmetry:
O(n + k) constraints break O(n! · k !) symmetries
Generalisation:
Partial variable symmetry + wreath value symmetry:
O(n + k) constraints break O(n! · (m!)` · `!) symmetries
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Classification of Symmetry Detection

Careful
General symmetry detection schemes are
graph-isomorphism complete
(and are beyond the scope of this lecture).

Definition (Structural symmetry detection)
Structural symmetry detection is about exploiting the
combinatorial structure of a problem toward deriving, ideally
in polynomial time and space, the symmetries of the model
(even if there are exponentially many derived symmetries):

Static structural sym detection: when posting.
Dynamic structural sym detection: when searching.
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Static Structural Symmetry Detection

Bottom-up derivation (SARA’05)
Key insight: Once the symmetries of (global) constraints
and functions are identified (manually), the symmetries of a
model with these constraints and functions can be derived
compositionally, automatically, and efficiently:

Symmetry identification
Symmetry composition

A subset of our results turned out to be in (Roy & Pachet,
ECAI’98 Workshop on Non-Binary Constraints).
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Static Structural Symmetry Detection

Symmetry identification
Consider a problem with variables X over domain D:

Constraint allDifferent(x1, . . . , xn) has full value sym.
Function nbDistinct(x1, . . . , xn) has full value symmetry.
Constraint atMost(m,d , [x1, . . . , xn]) has partial value
symmetry over the partition {d} ∪ (D \ {d}) of D
(at most m occurrences of d among the variables xi ).
Constraint x1 < x2 has partial variable symmetry over
the partition {x1} ∪ {x2} ∪ (X \ {x1, x2}) of X .

Similarly for row and column symmetries.

+ Extend the Global Constraint Catalogue accordingly!
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Static Structural Symmetry Detection

Symmetry composition
Consider a problem with variables X over D = {a, . . . ,h}:

If the constraints c1 and c2 have full value symmetry,
then their conjunction c1 & c2 has full value symmetry.
Extension to functions. Example: The expression
3 · nbDistinct(x1, x2, x3) + 4 · nbDistinct(x4, x5, x6)
has full value symmetry.
Generalisation to partial symmetry (PS). Example:
atMost(i ,a,X ) has PS over {a} ∪ {b, c, . . . ,h}, and
atMost(j ,b,X ) has PS over {b} ∪ {a, c, . . . ,h}, so
their conj. has PS over {a} ∪ {b} ∪ {c, . . . ,h} if i 6= j ,
but PS over {a,b} ∪ {c, . . . ,h} if i = j :
+ Need for aggregation into atMost([i , j], [a,b],X ).

+ Each composition takes time polynomial in |X |+ |D|.
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Static Structural Symmetry Detection

Example (Detected symmetries)
Scene allocation problem:
full value symmetry (indistinguishable days)
Progressive party problem:
partial row symmetry (same-size guest crews),
full column symmetry (interchangeable periods), and
partial value symmetry (same-capacity host boats)
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Dynamic Structural Symmetry Detection

Example
Consider a combinatorial problem with decision variables
X = [x1, x2, . . . , xn] over domain D = {a, . . . ,h}:

The constraint atMost([3,2], [a,b],X ) has partial value
symmetry over {a} ∪ {b} ∪ {c, . . . ,h}.
The decision x1 = a has partial value symmetry over
{a} ∪ {b, c, . . . ,h}.
Their conjunction thus has partial value symmetry over
{a} ∪ {b} ∪ {c, . . . ,h}}.
Projection onto X \ {x1} of the original constraint gives
atMost([2,2], [a,b], [x2, . . . , xn]), which has partial
value symmetry over {a,b} ∪ {c, . . . ,h}:
a new symmetry was dynamically detected!
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Évariste Galois (1811–1832)

Évariste Galois was one of the
parents of group theory.
Insight: The structure of the
symmetries of an equation
determines whether it has so-
lutions or not.

Marginal note in his last paper: “Il y a quelque chose à
compléter dans cette démonstration. Je n’ai pas le temps.”
(There is something to complete in this demonstration.

I do not have the time.)
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In Practice

Few symmetries in real-life problems?
Keep in mind the objective:
first solution, all solutions, or best solution?
Symmetry breaking might not pay off when searching
for the first solution.
Problem constraints can sometimes be simplified in the
presence of symmetry-breaking constraints.
Example: z = |x − y | can be simplified into z = x − y if
symmetry breaking requires x ≥ y .
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Future Work: Other Orders

Lexicographic order: 12 <lex 13 <lex 21

000,001,010,011,100,101,110,111

Co-lexicographic order: 21 <colex 12 <colex 13
+ Shorter, faster, more elegant and natural algorithms!
Gray order (Gray, US Patent 2632058, 1953):

000,001,011,010,110,111,101,100

+ Only one value (underlined) changes each time!
Boustrophedonic order (Flajolet et al., TCS, 1994):
turning like oxen in ploughing; the writing of alternate
lines in opposite directions (Merriam-Webster)

Used for listing objects in combinatorial generation (DSSB),
but can / should be turned into constraints (for SSSB)!
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Future Work

Heuristics for incomplete symmetry breaking.
Handling of conditional / dynamic symmetries.
Push symmetry breaking into global constraints.
Symmetry detection and breaking in CP systems.
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