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Abstract

This work considers initial value problems (IVPs) for ordinary differential equa-
tions (ODEs) where some of the data is uncertain and given by intervals as is
the case in many areas of science and engineering. Interval methods provide
a way to approach these problems but they raise fundamental challenges in
obtaining high accuracy and low computation costs. This work introduces a
constraint satisfaction approach to these problems which enhances traditional
interval methods with a pruning step based on a global relaxation of the ODE.
The relaxation uses Hermite interpolation polynomials and enclosures of their
error terms to approximate the ODE. Our work also shows how to find an eval-
uation time for the relaxation that minimizes its local error. Theoretical and
experimental results show that the approach produces significant improvements
in accuracy over the best interval methods for the same computation costs. The
results also indicate that the new algorithm should be significantly faster when
the ODE contains many operations.
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Chapter 1

Introduction

1.1 The Initial Value Problem for Parametric
ODEs

Initial value problems (IVPs) for ordinary differential equations (ODEs) arise
naturally in many applications in science and engineering, including chemistry,
physics, molecular biology, and mechanics to name only a few. An ordinary
differential equation Q is a system of the form

u'(t) = fi(ui(t),...,un(t))
: (1.1)

often denoted in vector notation by «'(t) = f(u(t)) or v’ = f(u), in the unknown
function u of the single independent variable . 1 Note that such a system is
explicit in the derivative v’ of the function u. A parametric ODE is an ODE
where the function f contains parameters. In this work, we talk about ODEs
to denote both traditional and parametric ODEs. An initial value problem is an
ODE with an initial condition u(tp) = uo. In addition, in practice, it is often
the case that the parameters in f and/or the initial value ug are not known
with certainty but are given as intervals. In general, analytical methods fail to
solve initial value problems. Therefore, numerical methods play a fundamental
role in obtaining approximate solutions to these problems. Numerical methods
do not try to approximate the solution to an IVP over a continuous range of
the variable ¢ but instead over a discrete range of time points g, t1,. .., .

1Only autonomous systems are considered in this work. It is easy to generalize the results
to non-autonomous systems.
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1.2 Standard Numerical Methods

Standard numerical methods produce floating-point approximations of the solu-
tions at different points in time. They include one-step and multistep, explicit
and implicit methods. Well known methods are the Euler, Taylor, Runge-Kutta,
Adams-Moulton-Bashforth and BDF methods [Hen62, Lam91, Sha93]. These
methods are usually fast and reliable for many applications, but there are cases
where they can produce inaccurate results. Furthermore, when the parameters
and/or the initial values of an IVP are not known with certainty but are given
as intervals (as is often the case in practical applications), standard numerical
methods may not be the simplest way to approach the resulting parametric or-
dinary differential equations since, in essence, they would have to solve infinitely
many systems.

1.3 Validated Methods

Validated or interval methods, pioneered by Moore [Moo66], return enclosures
of exact solutions at different points in time, i.e., for a given IVP, they are
guaranteed to return intervals containing the exact solution. Validated methods
for IVPs for ODEs are based on interval arithmetic. They are generally more
costly than standard numerical methods. However, they have a number of
advantages over the latter:

e They inherently accommodate uncertainty in the parameters or initial
values by using intervals instead of floating-point numbers. They are thus
well suited for parametric ODEs;

e Since they produce guaranteed enclosures of the exact solutions, they may
be very useful for computations that are critical to the safety or reliability
of a system;

e They prove numerically the existence and uniqueness of the solution to an
IVP for an ODE.

Traditional validated methods usually consist of two processes applied at each
integration step: (1) a bounding box process that proves existence and unique-
ness of the solution and computes a rough enclosure (called a bounding box)
of the solution over a time interval [to,t1]; (2) a forward process that com-
putes an enclosure of the solution at ¢;. The bounding box process, which
is specific to validated methods, is necessary to bound the error terms in the
forward process. The forward process is generally realized by applying a one-
step Taylor interval method and making extensive use of automatic differenti-
ation [Ral81] to obtain the Taylor coefficients [Eij81, Kru69, Moo66, Moo79].
Lohner’s Anfangswertaufgabe (AWA) system [Loh87] was an important step in
interval methods which features efficient coordinate transformations to tackle
the wrapping effect. More recently, Nedialkov and Jackson’s interval Hermite-
Obreschkoff (THO) method [NJ99] improved on AWA by extending a Hermite-
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Obreschkoff’s approach (which can be viewed as a generalized Taylor method)
to intervals. Another recent approach, the Taylor models, was proposed by Berz
& Makino [BM98] for reducing the wrapping effect. Their scheme validates ex-
istence and uniqueness and also computes tight enclosures of the solution in one
process, contrary to the other methods mentioned above.

1.4 Difficulties in Validated Methods

Validated methods encounter a number of important difficulties:

e The need to bound the local error at each step of the integration. The
bound may be excessively large or very small step sizes may be required
in order to prove numerically that the bound is correct (see Section 3.1);

e The so-called wrapping effect, which is the name given to the over-
estimation arising when we enclose by a vector of intervals (called a box)
the exact solution set at a given time. This is a crucial problem which is
typical of interval methods. If not handled correctly, the wrapping effect
may result in exceedingly large enclosures of the solution after a number
of integration steps and it can be shown that the size of the enclosures
may grow exponentially, even if the step size converges to zero (see Section
2.4);

e The over-estimations which are inherent to interval computations (see
Subsection 2.1.3).

1.5 Introducing Constraints in ODEs

The research described in this work takes a constraint satisfaction approach
to ODEs. Its basic idea [DJVH98, JDVH99, JVHDOI] is to view the solving
of ODEs as the iteration of three processes: (1) a bounding boz process, (2) a
predictor process that computes initial enclosures at given times from enclosures
at previous times and bounding boxes, and (3) a pruning process that reduces
the initial enclosures without removing solutions 2. The real novelty in our
approach is the pruning component. It is based on the construction of a non-
trivial constraint from a relazation of the ODE, a key concept in constraint
satisfaction [VH98]. This constraint can then be used to prune the solution
space at the various integration points.

1.6 Contributions

The main contribution of this work is to show that an effective pruning technique
can be derived from a relaxation of the ODE, importing a fundamental principle

20bserve that interval extensions of predictor/corrector methods (e.g., [NJ99]) can also be
viewed as the composition of a predictor and a pruning step.
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from constraint satisfaction into the field of validated differential equations. Four
main steps are necessary to derive an effective pruning algorithm.

1. The first step consists in obtaining a relaxation of the ODE by safely
approximating its solution using Hermite interpolation polynomials;

2. The second step consists in using the mean-value form of this relaxation
for more accuracy and efficiency. Unfortunately, these two steps, which
were skeched in [JDVH99], are not sufficient and the resulting pruning
algorithm still suffers from traditional problems of interval methods;

3. The third fundamental step [JVHDO1] consists in globalizing the pruning
by considering several successive relaxations together. This idea of gener-
ating a global constraint from a set of more primitive constraints is also at
the heart of constraint satisfaction. It makes it possible, in this new con-
text, to address the problem of dependencies (and hence the accumulation
of errors) and the wrapping effect simultaneously 3;

4. The fourth and final step consists of finding an evaluation time for the
relaxation which minimizes the local error of the relaxation. Indeed, the
global constraint generated in the third step, being a relaxation of the
ODE, is parametrized by an evaluation time. Interestingly, for global
filters based on Hermite interpolation polynomials, the (asymptotically)
optimal evaluation time is independent from the ODE and induces negli-
gible overhead on the computational cost of the methods.

Theoretical and experimental results show the benefits of the approach. From a
theoretical standpoint, the constraint satisfaction approach provides a quadratic
improvement in accuracy (asymptotically) over the best interval method we
know of for the same computation costs. The theoretical results also show
that our approach should be significantly faster for a given precision when the
ODE contains many operations. Experimental results, obtained from an object-
oriented implementation of our algorithms, confirm the theory. They show that
the constraint satisfaction approach often produces significant improvements
in accuracy over existing methods for the same computation costs and should
produce significant gain in computation times when the ODE contains many
operations. Of particular interest is the versatility of the approach which can
be tailored to the problem at hand.

1.7 Outline

The thesis is organized as follows. Chapter 2 introduces the main definitions,
notations and the necessary background. Chapter 3 presents the state-of-the-art
in validated methods for IVPs for ODEs. It also explains the bounding box pro-
cess, and presents its theoretical basis and methods to implement it. Chapter 4

3Global constraints in ordinary differential equations have also been found useful in [CB99].
The problem and the techniques in [CB99] are however fundamentally different.
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gives a high-level overview of the constraint satisfaction approach to parametric
ODEs. The next four chapters are the core of the work. Chapter 5 intro-
duces multistep filters, addresses their problems (i.e. the wrapping effect and
an inherent dependency problem) by the notion of global filters, and proposes
a pruning algorithm based on these global filters. Chapter 6 presents multistep
Hermite filters as a special case of multistep filters. Chapter 7 describes how
to choose an evaluation time to minimize the local error of a multistep Hermite
filter. Chapter 8 presents the overall algorithm. Chapters 9 and 10 report the
theoretical and experimental analyses and Chapter 11 concludes the work and
proposes some directions for further research. Appendix A reports the bench-
marks used in our experimental results. Appendix B analyzes the computational
cost of generating Taylor coefficients as well as their Jacobians. Appendix C
gives some detailed proofs of results presented in Chapter 7. Finally, Appendix
D discusses in some detail the evaluation of Hermite interpolation polynomials.
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Chapter 2

Background and Notations

2.1 Interval Arithmetic

2.1.1 Exact Interval Arithmetic

Interval arithmetic was introduced by Moore [Moo66]. An interval is a closed
bounded set of real numbers

[a,b] = {z | a < z < b}. (2.1)

We denote by IR the set of all intervals. Let Iy = [a,b] € IR, I» = [¢,d] € IR
and o € {4+, —, %, /}. The interval arithmetic operations are defined by

LoL={zoy|xzeh, yel} (2.2)

where it is assumed that 0 ¢ > if o = /. These operations can be defined in
terms of real arithmetic operations as follows:

L+, = [a+c¢b+d), (2.3)
L-L = [a—db—d, (2.4)
L xI, = [min{ac,ad,bc,bd}, max{ac, ad, be, bd}], (2.5)

L/, = Ja,b]x[1/d,1/c]. (2.6)

Algebraic properties of interval arithmetic can be found e.g. in [NJC99]. In
the following, we will omit the symbol % and we will not distinguish between
the degenerate interval [a,a] and the real number a. Finally, the relation “=”
between two intervals I; and I, is defined by

L=L s inl #0 (27)

2.1.2 Rounded Interval Arithmetic

When implementing interval arithmetic on a finite-precision machine, the
bounds of an interval are no longer reals, but floating-point numbers. More-
over, the result of an arithmetic operation on two floating-point numbers is not

7
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necessarily a floating-point number. However, we are interested in using in-
terval arithmetic for computing rigorous bounds on the solutions of ODEs and
it is possible to program interval arithmetic on a computer with appropriate
rounding (called directed rounding) of left and right computed endpoints of the
intervals, so that the computed interval result always contains the exact interval
result. This is called rounded or machine interval arithmetic.

2.1.3 Over-Estimations in Interval Arithmetic

When interval arithmetic is used to bound the range of a function, the computed
range is often an important over-estimation of the exact range. This over-
estimation of the range of a function is typical of interval computations. let us
illustrate this phenomenon by considering the following function:

g(z) =z —=. (2.8)

The exact range of g is of course the interval [0, 0]. Now assume that we want to
compute the range of g for z € [0, 1] by using interval arithmetic. The computed
range is given by

[Oa 1] - [07 1] = [_17 1] (29)

and is thus an important over-estimation of the exact range. The reason for this
is that, although the two occurences of z in the expression of g denote the same
variable, when we replace the variable z by its range [0, 1], the two occurences
of the interval [0, 1] are independent in interval arithmetic. In other terms, any
point of the first interval is combined with any point of the second interval. This
important problem of interval computations arises whenever several occurences
of the same variable appear in an expression. Therefore, two equivalent real
expressions, e.g. z(z — 1) and z? — x, will yield different results in interval
arithmetic, depending on their syntactic form. Mean-value forms, presented
in Section 2.5, often allow to reduce significantly the over-estimations due to
interval arithmetic by putting expressions in a particular syntactic form.

2.2 Basic Notational Conventions

Small letters denote real values, vectors and functions of real values. Capital
letters denote matrices, sets, intervals, vectors and functions of intervals. A
vector of intervals D € TR™ is called a box. If A C R™, then OA denotes the
smallest box D € IR™ such that A C D and g(A) denotes the set {g(x) | x € A}.
If M is a regular (point or interval) matrix, then M ! denotes an enclosure ! of
the inverse of M. A relation is a function r : R — Bool, where Bool denotes the
booleans. We also assume that ¢;, t. and t are reals, u; is in R™, and D; and B;
arein IR™ (i € N). We use m(D) to denote the midpoint of D and s(D) to denote
D —m(D). Observe that m(D)+s(D) = D. We use w(D) to denote the width of
a box. More precisely, w([a,b]) =b—a and w((I1,..., 1)) = (wW(l1),...,w(Iy))

1By enclosure of a set A, we mean a set containing A.
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if ; e IR Ifg:R™ - R*, 2 = (x1,...,%,) and & = (z;,...,2;,) with

i1,...,%p € L..m, then Jzg(z) denotes the Jacobian matrix
8 e
ﬁ(m) ﬁ(w)
. . (2.10)
Ogn Ogn
D) L. e (a)

In particular, we write Jg(z) = J,g(z) (differentiation wrt all variables of g).
If not specified, n denotes the dimension of the ODE (i.e., the number of scalar
equations), h > 0 denotes the step size of the integration, and k denotes the
number of previous values of the solution at times %, ...,t;_1 used to compute
the new value at time #; (k-step approach).

Notation 1 (Bold Face Notations) Let A be a set and a; € A where i € N.
We use the following bold face notations.

a = (ao,--.,ar) € AF+1
a = (azk,---,a (i+1)h-1) € AF, (2.11)
a;.i+; = (Qiy-...,a;45) € AL

Observe that ag = (ag,...,ar_1), a1 = (ag,...,a28-1), and a = (ag, ..., ax).

The following asymptotical notations are standard:

Notation 2 (Asymptotical Notations) Consider two functions f,g : R —
R and let x > 0. We use the following standard notations.

O(g(z)) if 3¢>0,Fe>0:2>e=|f(x)| < clg(z)l,
fla) =4 Q@) if 3c>0,3>0:z<e=|f@)] <dgl@)l, 4y
Qg(x)) if Fe>0,Fe>0:2<e=|f(x)] > clg(z)l], ’

c
O(g(z)) if f(z)=0(g(z)) and f(z) = (g(z)).
The notations extend component-wise for vectors and matrices of functions.

Finally we assume that the underlying interval arithmetic is exact for the the-
oretical parts of this work (i.e. there are no rounding errors).

2.3 Basic Definitions

As traditional, when we consider an ODE «' = f(u) and an interval of integra-
tion T', we assume f € C"(f2), where r is sufficiently large and 2 is an open set
such that T x Q contains the trajectories of the solutions on T 2. In addition,
we restrict our attention to ODEs that have a unique solution for a given ini-
tial value. Techniques to verify this hypothesis numerically are well-known (see
Section 3.1). In order to make the dependence on the initial condition (¢g, uo)
explicit, we introduce the following definition of the solution to an ODE.

2The standard mathematical symbol C”(Q) denotes the set of all functions whose r-th
derivative exists and is continuous on Q.
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Definition 1 (Solution of an ODE) Let A C R x R” X R be an open set.
The solution of an ODE u' = f(u) is the function s : A — R™ such that

s (to,up, t) = f(s(to, ug,t))
. at \“0; Y0, 0, 40, ’
V(to,Uo,t) eA: { S(to,UO,to) o (213)

Observe that, since we restrict attention to autonomous systems in this work,
we can write

s(to, z,t) = s(0,2,7) (2.14)
where 7 =t — {9, and thus
s s
w(toy%t) = %(OaxaT)' (2.15)

In particular, when ¢t = tg, the function

aiﬁ(t T t) — %
0,45 - 87’j

. (to,=,7) (2.16)
ot (to,z,to)

(07w70)

depends only on x. This justifies the following notation, which captures the
notions of real and interval Taylor coefficients of the solution of an ODE as well
as their Jacobians.

Notation 3 (Taylor Coefficients and Jacobians) Let s be the solution of
an ODE Q, x € R*, D € IR"”, and let ty be any real number. Then,

1. (x)J = ;_!%(to,.f(},t)

:
(to,z,to)

2. {(z); |z € D} C (D); € IR";

7!

(t0,$,t0);
4 {.7(3})] | x € D} - j(D)] € ]IRan;

5 (®)0, (D)j1, J(x);1 and J(D);, denote respectively the l-th component
of (), (D);, J(x); and J(D);.

In the context of our multistep approach (to be presented in Chapter 4), it is
useful to generalize Definition 1 in order to make the dependence on the last
k + 1 redundant conditions (tg,uq), - - -, (tk, ur) explicit.

Definition 2 (Multistep solution of an ODE) Let s be the solution of an
ODE Q. The multistep solution of Q is the partial function ms : A C RFt1 x
(RP)E+ x R — R™ :

S(to,Uo,t) if U; = S(to,Uo,tz’), 1 S ) S k,

undefined otherwise. (2.17)

ms(t, u,t) = {



2.4. THE WRAPPING EFFECT 11

Since we are dealing with interval methods, we need to introduce the notions of
interval extensions of a function and a relation. These notions were introduced
in [VHMD97]. However, because the techniques proposed in this work use
multistep solutions, which are partial functions, it is necessary to generalize the
notion of interval extension to partial functions and relations.

Definition 3 (Interval Extension of a Partial Function) The interval
function G : IR® — IR™ is an interval extension of the partial function
g:ECR* - R™ if

VD e IR" : g(E N D) C G(D). (2.18)

Definition 4 (Interval Extension of a Partial Relation) The interval re-
lation R : IR™ — Bool is an interval extension of the partial relation r : E C
R™ — Bool if

VD elIR": (3z € END :r(z)) = R(D). (2.19)

Given interval extensions for the primitive operations (exp,In, \/>8in, cos, .. )
and relations, it is possible to obtain interval extensions for composite functions
and relations. The natural interval extension is the simplest way to extend a
real function (or relation) to an interval function (or relation). The natural
interval extension is obtained by replacing each real number by its approxima-
tion, each real variable by an interval variable, each real arithmetic operation by
the corresponding interval arithmetic operation, and each primitive operation
or relation by its interval extension. A more advanced interval extension is the
so called mean-value interval extension, which is presented in Section 2.5.

Finally, we generalize the concept of bounding boxes, a fundamental concept
in interval methods for ODEs, to multistep methods. Intuitively, a bounding
box encloses all solutions of an ODE going through certain boxes at given times
over a given time interval. Bounding boxes are needed to enclose error terms in
validated methods for ODEs (see Chapter 6).

Definition 5 (Bounding Box) Let O be an ODE system, ms be the multistep
solution of Q, and {to,...,tr} CT € IR. A boz B is a bounding box of O over
T wrt (t,D) if, for allt € T, ms(t,D,t) C B.

2.4 The Wrapping Effect

The wrapping effect is a fundamental concept in interval computations and in
particular in validated methods for ODEs [Moo66, Loh01, NJ0O0]. It is the
name given to the overestimation that arises from approximating a set by a
box. In the context of ODEs, the set of solutions at each integration step is
over-approximated by a box. These over-approximations accumulate step after
step and may result in an explosion in the sizes of the computed boxes. The
wrapping effect in validated methods for ODEs can be illustrated by Moore’s
[Moo66] classical example:

uy = us

v = . (2.20)
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The solution of this ODE for an initial condition u(0) = uo is given by
u(t) = A(t)uo (2.21)

where
cos(t)  sin(¢)

Alt) = —sin(t) cos(t)

(2.22)
Let us consider a box initial condition u(tg) € Dg. Figure 2.1 shows the rectangle
Dy in the (u1,us)-phase plane. At time ¢, the ezact solution set is a rotated
rectangle given by

S(t) = {A(t)uo | uo € Do}. (2.23)

Since A(t) is a rotation matrix, it follows that the size of the rotated rectangle
S(t) is constant for all ¢.

Now let us integrate this ODE by computing an enclosing box at each inte-
gration step. At a time t;, the smallest box that encloses the set S(t1) is given
by D1 = A(t1)Do (see Figure 2.1). The set S(t1) is thus over-approximated
by the box D;. Jackson [Jac75] calls Dy the wrapping of the set S(t1). Then,
at a time t2, we enclose the exact solution set {A(ta — t1)u1r | u1 € Dy} cor-
responding to the initial conditions u(¢1) € D; by its wrapping, i.e. the box
Dy = A(te — t1)D1. Thus, the size of the computed boxes increases step af-
ter step. Moore shows that this size grows exponentially, even if the step size
converges to zero.

The wrapping effect is thus a critical problem, which has to be dealt with in
any validated method. The standard solution used in interval methods for ODEs
to obtain tighter solution bounds is to choose, at each step, an appropriate local
coordinate system to represent the solutions compactly (see Section 3.3).

2.5 The Mean-Value Form

The mean-value form (MVF) of a function plays a fundamental role in interval
computations and is derived from the Mean-Value theorem. Mean-value forms
have two important advantages:

1. They often produce tighter intervals in the evaluation of the range of a
function;

2. They allow for problem linearizations and an easier treatment of the wrap-
ping effect.

Consider a differentiable function g : R — R. By the Mean-Value theorem, we
can write

g(z) = g(m) + ¢'(§)(z —m) (2.24)

for some ¢ strictly between x and m. The expression (2.24) is called the mean-
value form of g. How can (2.24) be useful in interval computations? Consider
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U2

D

- S(t1) = {A(t1)uo | wo € Do}

D1 = A(tl)Do

S(t2) = {A(t2)uo | uo € Do}

{A(t2 — tl)ul | uy € Dl}

Dy = A(ty — t1)D;

Figure 2.1: Wrapping Effect in Moore’s Example.

an interval I with z,m € I, and let DG be an interval extension of g’. We have
the relation
g(z) € g(m) + DG(I)(x — m). (2.25)

As a consequence, the interval function
Gr,m(X) = g(m) + DG(I)(X —m) (2.26)

is an interval extension of function g, called the mean-value interval extension
of g. It can be shown [NJC99] that the mean-value interval extension is effective
when the size of the interval I is sufficiently small. Indeed, the over-estimation
in the computed bounds is O(w(I)?). We can of course generalize the above
concepts to n-ary functions.

Example

Let g(z) = 22 — 2. We want to bound the range of g over the interval I = [0, 1].
The first method consists of evaluating the expression of g directly in interval
arithmetic by replacing = in g by the interval [0,1]. We obtain:

[0,1]* = [0,1] = [-1,1]. (2.27)

Now let us consider the mean-value form of g. We have ¢'(z) = 2z — 1 and an
interval extension of g’ can be obtained as DG(X) = 2X — 1. Let us choose
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m = m(I). The interval extension (2.25) of g is given here by
—0.25+ (2[0,1] — 1)(X — 0.5). (2.28)

To obtain a bound on the range of g over I = [0, 1], we replace X by [0,1] in
(2.28):
—0.25 + (2[0, 1] — 1)([0, 1] — 0.5) = [—0.75,0.25]. (2.29)

We have thus obtained a better bound on the range of g than in the direct
evaluation of the expression of g in interval arithmetic.

2.6 The Midpoint Technique

The midpoint technique is a standard tool in interval computation. It consists
of decomposing a matrix A as the sum of its midpoint matrix and the remainder
matrix composed of symmetric intervals:

A =m(A) + s(A4). (2.30)

In this work, the midpoint technique will be very useful in the following two
cases:

1. Enclosing a set of real matrix-matrix-vector products (see sections 5.4 and
5.5);

2. Converting an implicit interval linear system into an explicit one by matrix
inversion (see subsections 3.4.2 and 5.2.3).

1. Assume that we are interested in enclosing the set
P={ABd| A€ A, Be B, de D} (2.31)

where A, B are interval matrices and D is an interval vector. Assume also that
w(A) is small and that the wrapping effect in the product CD, where C = AB,
is small. A straightforward and cheap way to enclose the set P consists of
computing the product A(BD). But in general, this product does not yield
accurate results because of the wrapping effect (see Section 2.4) which occurs
two times : (1) in the product E = BD and (2) in the product AE. Another
sraightforward way of enclosing the set P is to compute the product (AB)D.
By hypothesis, the wrapping effect is small in this case and the product is
an accurate enclosure of P. However, the multiplication of the two interval
matrices A and B is a costly process (due to costly sign tests and rounding
mode switches in modern RISC architectures - see [Knu94] for more details).
In order to avoid this product, we apply the midpoint technique on A. By
distribution and rearrangement of the parentheses, we can write

P C Q = (m(A)B)D + s(A)(BD). (2.32)
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It is interesting to observe that no multiplication between two interval matrices
occurs in @ (note the importance of the parentheses!). From an accuracy
standpoint, the wrapping effect in (m(A)B)D is small (by hypothesis) and the
remainder term s(A)(BD) is small (because w(A) is small). Hence, @ is an
accurate enclosure of the set P which avoids the costly multiplication of two
interval matrices.

2. Consider the implicit interval linear system

A(]XO + A1X1 = B,

Xo € Dy, X1 C Dy, (2:33)

where Ag, A; are interval matrices and B, Do, D1 are interval vectors. We as-
sume that Ao contains no singular point matrix. The exact solution set to this
system is given by

S = {(ﬂfo,.’L‘l) (S (DO,Dl) | JAg € Ag, 3A; € Ay, b€ B : Agxg + A121 = b}

We are interested in converting the system (2.33) into a system .
Xo=CXqi+E (2.35)

which is explicit in the variable Xy and such that
S C{(zg,z1) € (Do, D1) | I € C, Fe € E: xg =Cx1 + e} (2.36)

A straightforward solution consists of computing an enclosure A, ! of the inverse
of Ay, multypling both sides of (2.33) by A;"' and rearranging the parentheses:

Xo=—(45"41)X, + A, ' B. (2.37)
However, the system (2.37) suffers from two drawbacks:

e We have to invert the interval matrix Ay. Computing an accurate enclo-
sure of the inverse of an interval matrix is a costly process (NP hard in
general, see [Ned99]);

e We have to multiply the two interval matrices A;' and A; (see Point 1).

In order to avoid this interval matrix inversion and this product of two interval
matrices, we apply the midpoint technique both on Ay and A; in (2.33). By
distribution, we can write

m(Ag)Xo = —m(A1)X; + B — s(A40)Xo — s(41)X;. (2.38)

Since Xg C Dy and X; C Dy, we can replace Xy by Dg in the term involving
s(Ap) and X by D; in the term involving s(4;):

m(Ao)XO = —m(Al)Xl + B — S(Ao)DO — S(Al)Dl. (239)
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To obtain a system which is explicit in the variable Xy, we compute an enclosure
m(Ap)~! of the inverse of the point matrix m(Ag), we multiply both sides of

(2.39) by m(4p)~! and we rearrange the parentheses 3:

Xo = —(m(Ao) "' m(A1)) X1 +m(Ag) ™' (B — 5(A0) Do — s(A1)D1).  (2.40)

Observe that in this last system, there is neither an interval matrix inversion
nor a product of two interval matrices.

2.7 Automatic Differentiation

In this section, we briefly introduce the technique of automatic differentiation,
which in the context of validated methods for ODEs is used to generate Taylor
coefficients and Jacobians. More details about automatic differentiation can
be found e.g. in [Moo66, Moo79, Ral80, Ral81, Cor88, Cor95]. Automatic
differentiation is based on well-known differentiation rules for arithmetic and
primitive operations, and on the chain rule for composite functions. In the
following, the operations +, —, x, /, exp, In, \ﬁsin, cos, . . . denote either floating-
point operations (if we want to compute approximations), or interval operations
(if we want to compute enclosures). If v is a function in ¢, we use the notation

()

v\ (¢

(v ; (' 0)
J:

(2.41)
for the Taylor coefficients of v at the point tg.

2.7.1 Taylor Coefficients of a Function

Here we show how to compute Taylor coefficients of a function. Let v, w and x be
functions in ¢. For the arithmetic operations, we have the following elementary
rules:

wEw); = (v);+(w);, (2.42)
J
(vw); = > (©)(w), (2.43)
1=0
J
w/w); = (1/w) ((U)j - Z(w)l(v/w)j—l> : (2.44)
=1
Differentiation rules for the primitive operations exp,In, \ﬁsin, cos,... can be

obtained from the elementary rules (2.42-2.44) by using the chain rule for com-
posite functions which is given as

(vow)'(t) =v'(w(t))w'(?) (2.45)

3Note that, even though m(Ao) is a point matrix, the enclosure m(4o)~! of its inverse is
generally not a point matrix, because of rounding errors.
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and the following important relation
1
(v); = ;(U')j—l- (2.46)

which is a direct consequence of the notation (2.41). As a first example, let us
derive the rule for w = exp(v). By the chain rule (2.45), we can write

w' = wv'. (2.47)

From (2.46) and the rule (2.43), we have successively

(w); = E(wl)j_l (2.48)

= %(wv')j_l (2.49)

= I3 N (2.50)
]l=0
131

= =) [G-Dw)(v); (2.51)
]l:0

Let us also derive the rules for w = cos(v) and z = sin(v). By the chain rule
(2.45), we can write

w = —z (2.52)
= wv'. (2.53)

From (2.46) and the rules (2.42)(2.43), we have successively

(w); = %(w')j—l (2.54)

- %(—ﬂw')j—l (2.55)
13-

= == > @)1 (2.56)
Jl:O

= 3G -D@n), (2.57)
]l=0
1,

(m)j — ;(-'L')j—l (2.58)
L

— 3(@ )j-1 (2.59)

= Y (260)
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—

- Z j =) )it- (2.61)
1=0

S,

Thus, the rules (2.57) and (2.61) for cos and sin have to be used pairwise. From
the above rules for arithmetic and primitive operations, we can differentiate to
an arbitrary order any function which is a composition of these operations, by
using the chain rule (2.45).

2.7.2 Taylor Coefficients of a Solution of an ODE

Now we show how we can compute Taylor coefficients of a solution v of an ODE
u' = f(u). By the relation (2.46), we can write

(w); =

—~~
S
~
~—
<
|
[uy

(2.62)

—~~
~
[¢]
£
~—
<
A

(2.63)

S =S

From (2.63), the Taylor coefficients of u can be generated recursively, i.e., we
have to compute the coefficient (u); 1 before we can compute (u);. From the
rules for arithmetic and primitive operations, we can compute the coefficient
(u); by using the coefficient (u);_1 and the chain rule (2.45).

Example

The following example is taken from [Cor95]. Let us consider the well-known
Lorenz system

' oy — ) (2.64)
"= —zz4pr—y (2.65)
"= zy- B (2.66)

The recursive relation (2.63) is given here by

(@)j+1 = of /G +1) (2.67)
Y)j+1 = (P Z(‘E)l(z)jl> /(G +1) (2.68)
1=0

=0

(2)j+1 = (Z 2)j-1— (z),-) /G +1). (2.69)



Chapter 3

Existing Validated Methods

In this chapter, we briefly review the most significant validated methods for
IVPs for ODEs. More details can be found e.g. in [Moo66, Loh87, NJC99,
Ned99, Rih94]. Most validated methods consist of two processes applied at
each step of the integration:

1. A bounding box process that computes a step size hy = t; — tg, proves
existence and uniqueness of the solution and computes a bounding box
over [to,t1], i.e. arough a priori enclosure of the range of the solution over

[to, t1];

2. A forward process that computes a tighter enclosure at ¢; using the latter
bounding box.

The intuition of the successive integration steps is illustrated in Figure 3.1.

In Section 3.1, we describe the bounding box process. The following sections
are concerned with the forward process. Section 3.3 presents interval Taylor
series methods (ITS). Several variants of ITS have been proposed and the most
significant one is probably Lohner’s method [Loh87]. In Section 3.4, we present

/,,,S(Tlo,Doytl) S(t,,Dyty)

to t t

Figure 3.1: Successive Integration Steps.

19
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Nedialkov’s recent interval Hermite-Obreschkoff method (IHO). Finally, Sec-
tion 3.5 describes two other recent approaches, namely Berz & Makino’s Taylor
Models [BM98] and our piecewise method [DJVHIS].

3.1 The Bounding Box Process
3.1.1 The Problem

The bounding box process solves the following problem. Let f € CP~1() where
p > 2. Given a box Dy C Q and a time tg, find a step size h; > 0 and a box B;
such that for any ug € Dy, there exists a unique solution u to the IVP

u' = f(u), u(to) =ug (3.1)

over the interval [tg,%1], where t1 = t9 + h1, and B; is a bounding box of
u' = f(u) over [to,t1] wrt (to, Do)-

To our knowledge, three methods have been proposed to solve this problem:
the constant enclosure method, Moore’s Taylor series enclosure method [Moo66]
(which is a generalization of the first method) and Lohner’s polynomial enclosure
method [Loh95]. All three methods are based on the Banach fixed-point theorem
and the Picard-Lindel6f operator. In this text, we will only present the constant
and the Taylor series enclosure methods.

3.1.2 Theoretical Basis

The fundamental theoretical basis of the bounding box methods presented here-
after is the Banach fixed-point theorem which is given as follows.

Theorem 1 (Banach Fixed-Point Theorem) Let X be a complete non-
empty metric space with a metric d and consider an application ¢ : X — X.
Let o € R satisfy 0 < a < 1. If

Vr,y € X :d(4(x), (y)) < ad(z,y) (3.2)

then there exists a unique © € X such that x = ¢(z).

How can we use this theorem to prove numerically the existence of a unique
solution to the IVP (3.1)? If f and u are continuous, then (3.1) is equivalent to
the system

u = ¢(u) (3.3)

where ¢ denotes the Picard-Lindeldf operator defined by

t
(¢(u))(t) = uo + t [f(u(s))ds. (3-4)

The idea is to apply the Banach fixed-point theorem to the Picard-Lindel6f
operator and to an appropriate set of functions X. From the assumption f €
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CP~1(Q)) where p > 2, it can be shown that there is a unique solution u € CP
to the IVP (3.1) in a neighborhood of tg for any ug € Dg. Using this result, we
can then prove the following theorem, due to Corliss & Rihm [CR96],

Theorem 2 Let ug € int(B1) C Q and f € C7(Q) where ¢ = max(l,p — 1).
Consider the interval valued function U : [to,t1] — IR™ defined by !

p—1
Ut) = (t—to) (uo); + (t — to)? (B1)y- (3.5)
§=0
If
Yt € [to,t1] : U(t) C By (3.6)
then there is a unique solution u to the IVP (8.1) in [to,t1] and
Vit € [to, t1] : u(t) € U(t). (3.7)

If the relation (3.6) holds, then B is a bounding box of the ODE over [tg, t1] wrt
(to,ug)- We are now in a position to present a generic bounding box algorithm
based on Theorem 2.

3.1.3 A Generic Algorithm

Consider an interval function ® : R x IR™ — IR"™ such that the relation
Vit € [to,t1],u0 € Do, By C Q:
S 2ot — to) (u0); + (t — t0)P(B1)p € ®(h, By)
holds. Assume that ®(hy, B;) C B;. From Theorem 2, B; is a bounding box of
the ODE over [tg,t1] wrt (t9, Dg). Since

S P_g(t — to) (uo); + (t — to)P(®(h1, B1)),

(3.8)

C ®(hy, ®(h1, B1))
C @(h1,B1)

it follows that ®(h1, B1), ®(h1, ®(h1,B1)), ®(h1, ®(h1, ®(h1,B1))),- .. are also
(tighter) bounding boxes of the ODE over [tg,t1] wrt (t9,Dp). From these
results, we can build a generic algorithm parametrized by ®:

(3.9)

1. Guess a step size h; and a box By;

2. If ®y,B1) C Bj, then we have succeeded and By, ®(hi,B:),
®(hy,®(h1,B1)), ... can be chosen as a bounding box;

3. Else, try again with another h; and B;.

Several strategies can be applied to guess successive values for h; and B;. One
possible technique consists of (1) repeatedly widening the initial guess for By
while the inclusion in 2. is not verified; (2) reducing the step size h; if the
repeated inflations of By still do not yield a validated enclosure.

In the next two subsections, we present the constant and the Taylor se-
ries enclosure methods for the bounding box process, which correspond to two
instantiations of the interval function ® in the generic algorithm.

Lint(A) denotes the interior of A.
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3.1.4 The Constant Enclosure Method

The constant enclosure method is obtained by defining the function ® as
®(hy,B1) = Do + [0, h1]F(Bs) (3.10)

where F' is an interval extension of f. The function ® satisfies the relation
(3.8) for p = 1. Note that Theorem 2 requires that f be in C(B;). As long
as f is a composition of +,—,x, /, exp, ln,\ﬁsin,cos,..., i.e. f contains only
arithmetic and standard operations, then f is continuous wherever it is defined.
As a consequence, the hypothesis f € C'(Bj) can be verified numerically simply
by evaluating the Jacobian J(B;);. Note also that the forward process usually
computes J(B1)1 to bound the truncation error. Therefore, this evaluation
need not be performed in the bounding box process.

The constant enclosure method is simple but has the disavantage of restrict-
ing the step size to Euler steps.

3.1.5 The Taylor Series Enclosure Method

Moore’s Taylor series enclosure method [Moo66] is a generalization of the con-
stant enclosure method. It is obtained by defining the function ¢ as

®(hi,By) = pi[(], h1)?(Dg); + [0, h1]7(B1),- (3.11)

The interval Taylor coefficients (Dy); and (Bq)p, in (3.11) can be computed
by automatic differentiation (see Section 2.7). Assuming that f contains only
elementary and arithmetic operations, the hypothesis f € C?~1(B;) where p > 2
can be verified numerically by evaluating (B;),. The Taylor series enclosure
method allows larger step sizes than the constant enclosure method. The step
size can increase as the order of the series increases. Algorithms implementing
the Taylor series enclosure method are proposed e.g. in [Ned99, CR96].

3.2 The Forward Process

3.2.1 The Problem
Consider the IVP (3.1) and let w be its solution. Given

e a box D;_; and a time ¢;_;, computed at the previous integration step,

e a step size h; = t; —t;_1 and a bounding box B; of the ODE over [t;_1,t;]
wrt (t;_1,D; 1), computed in the bounding box process of the current
integration step,

the objective is to compute a box D; containing the exact solution u(¢;) for any
u;—1 € D;_1, by means of the bounding box B;.
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3.2.2 The Methods

Most methods implementing the forward process are based on Taylor series plus
remainder. Section 3.3 presents the most significant ones. Another approach,
based on the Hermite-Obreschkoff relation, is presented in Section 3.4. In all
these methods, the local truncation error is enclosed using a bounding box.

3.3 Interval Taylor Series Methods

3.3.1 Moore’s Taylor Method

The first and simplest method was proposed by Moore [Moo66]. By Taylor’s
theorem, we can write

p—1

mmzzhwlm+%wmn (3.12)

Jj=0

where t;_; < & < t;, 1 <1 < n. Moore’s Taylor method computes a box D;
containing the exact solution u(t;) by the formula

p—1

D=3 K(Di-1); + W (Bi)p. (3.13)

j=0
This formula however suffers from two important drawbacks:

1. The widths of D; always increase with ¢, even if the true solutions actually
contract. This comes from the following property of interval addition:

w([a,b] + [¢,d]) = w([a+ ¢, b+ d]) > w(]a,b)); (3.14)

2. The wrapping effect (see Subsection 2.4) is not handled, often leading to
quick size explosions of the computed boxes D;.

To avoid these problems, Moore does not apply his method to compute enclo-
sures for the original IVP, but uses it to compute enclosures for another related
IVP, for which the solution changes slowly. Enclosures for the original IVP are
then obtained by a local coordinate transformation [Moo66].

3.3.2 Mean-Value Taylor Method

The mean-value Taylor method is based on the mean-value form of a Taylor
series (see Section 2.5). By the Mean-Value theorem, (3.12) can be rewritten as

p—1 p—1
WW=ZMWJW+ZMWWJ%AWM)%W%HMQ

=0 =0
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where t; 1 < & < t; and py is on the straight line between m; 1 and w; 1,
1 <1< n. We can compute a box D; > u(t;) by the formula

D; = i hg(m(DFl))j + i hgj(Difl)j (Di—1 —m(Dj_1)) + hE(B;)p.

(3.16)
As pointed out in Section 2.5, the mean-value Taylor method is effective when
the boxes D; remain sufficiently small throughout the integration. In that case,
it will yield more accurate results than Moore’s Taylor method. However, the
computational cost of the mean-value Taylor method is O(n?), whilst the cost
of Moore’s Taylor method is only O(n?). It is interesting to observe that the
mean-value Taylor method allows for decreasing widths of the successive boxes
when the true solutions contract. But it does not handle the wrapping effect
occuring in the evaluation of the interval matrix/vector product

S HIDi); | (Dics —m(Di). (317

However, it is easy to incorporate local coordinate transformations in (3.16)
because the formula is in linear form.

3.3.3 Coordinate Transformations in the Mean-Value Tay-
lor Method

In order to reduce the wrapping effect occuring in the evaluation of the interval
expression (3.17), we can make use of local coordinate transformations at each
step of the integration. The basic idea is to compute an enclosing box, not in the
original coordinate system, but in another system which changes from step to
step. This allows for more compact enclosures of the exact solution set at each
time t;. At the i-th step of the integration, the formula (3.16) can be rewritten

as
D; = Ai(Di-1 —m(D;-1)) + K; (3.18)
where
p—1
A = ) BI(Diw);, (3.19)
Jj=
Ki = 3 K(m(Dio)); + M (Bi)y. (3.20)
=0

At each step i, we define a local coordinate system by the affine transformation

u; = Myy; + ¢ (321)



3.3. INTERVAL TAYLOR SERIES METHODS 25

where M; € R®*™ is a regular matrix and ¢; € R”. We then compute two boxes
D; and Y;, respectively in the original and local coordinate systems, as

D; = (AiM; 1)Yi 1+ Ai(ci1 —m(D;i 1)) + K, (3.22)
Vi = (M7'(AiM;_1))Yie1 + (M A3)(ciz1 — m(Di—1))
+M; (K = ). (3.23)

Note that D; is used to compute the components of the formula (3.23) at step
i + 1, while Y; is used to propagate the solution via the formula (3.23) (see
also Section 5.5). The methods of Eijgenraam [Eij81], Kriickeberg [Kru69],
Lohner [Loh87] and Rihm [Rih94] correspond to different variants of the formu-
lae (3.22)(3.23). How do we choose the matrix M;? For simplicity, assume that
A; is a point matrix. We can observe that if the matrix Mi_l(AiMi,l) is diag-
onal, then no wrapping effect occurs in the evaluation of (M (A;M;_1))Y;—1.
From a theoretical standpoint, an ideal choice is thus M; = A; M;_;. This choice
is the basis of the methods of Kriickeberg [Kru69] and Eijgenraam [Eij81]. How-
ever, it suffers from serious numerical problems. Indeed, after a number of steps,
the matrix 4; M; 1 often becomes ill-conditioned. As a consequence, if we try
to enclose its inverse, the resulting interval matrix contains very large intervals.
Therefore, the method can break down very quickly. In the next section, we de-
scribe Lohner’s choice for the matrix M;, which is generally much more efficient
numerically. Finally, it is important to note that the associativity (determined
by the parentheses) of the multiplications in (3.23) is critical in reducing the
wrapping effect.

3.3.4 Lohner’s Method

Lohner’s method [Loh87] is actually a particular case of (3.22)(3.23), where we
take ¢; = m(D;) and M; is an orthogonal matrix obtained by computing a
QR-factorization of a permutation of the matrix m(A4;)M;_;. We obtain the
formulae

D; = (AiM;1)Yi1 + K, (3.24)
Vi = (M;7'(AiM;_1))Yio1 + M7 (K; — m(D;)). (3.25)

The method is initialized by 2

YO = Do—m(Do), (326)
A = I (3.27)

Since Y} is a symmetric box, it follows from (3.24)(3.25) that m(D;) = m(K;)
and Y; is a symmetric box, for all ¢ > 0. Let us now explain Lohner’s strategy
for computing a coordinate transformation matrix M;.

2The standard matrix symbol I denotes the identity matrix.
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Orthogonal Transformation Matrices

Let A7 = m(A;M;_1). The objective is to enclose the parallelepiped
Si={Ajyi1 |yi-1 €Yia} (3.28)
by a compact parallelepiped
Py = {My; | yi € (M A7)Y; 1} (3:29)

As mentioned in the previous subsection, the optimal enclosing parallelepiped
is P; = S;, for which we have M; = A}, but in general this leads to numerical
instability. Hence, we need to look for a more stable scheme in our choice for the
transformation matrix M;. Lohner’s idea is to restrict attention to orthogonal
matrices. The justification for this restriction is that orthogonal matrices are
very well-conditioned. As a result, the enclosing parallelpipeds are not optimal
anymore but the much better numerical stability of this scheme compared to the
optimal enclosing parallelepiped scheme makes the former generally more effi-
cient than the latter. The remaining issue is the choice of a suitable orthogonal
matrix.

An Example

We first illustrate the method on the following example where n = 2:

5
I

i [ o1 ] ’ (3.30)

([-0.5,0.5], [0.5,0.5]).

Yia

Note that for n = 2, a parallelepiped P; corresponding to an orthogonal matrix
M; is actually a rotated rectangle in the phase plane. Figure 3.2 (a) shows
the parallelepiped S; and Figure 3.2 (b) shows the box A}Y;_;, which is the
smallest enclosing box of S; (i.e. the smallest enclosing parallelepiped P; of
S; for which M; = I). As can be seen from the figure, this box significantly
over-approximates the set S;.

Lohner suggests that the matrix M; be chosen such that one edge of the
rectangle P; be parallel to the longest edge of the parallelepiped S;. The resulting
rectangle P; fits well the parallelepiped S;, as shown in Figure 3.2 (d). Figure
3.2 (c) shows the box (M; ' A¥)Y;_; in the new coordinate system induced by
M;. Figures 3.2 (e) and (f) correpsond to a rotation matrix M; for which one
edge of the rectangle P; is parallel to the shortest edge of the parallelepiped S;.
As can be observed from Figure 3.2 (f), P; does not fit .S; as well as in Figure
3.2 (d). Consequently, the longest edge heuristic proposed by Lohner appears
to be a better one than the shortest edge heuristic.
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Figure 3.2: Choosing a Local Coordinate System.
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The QR-Factorization Method

We now explain how Lohner integrates the above ideas in his QR-factorization
technique to compute the matrix M;. Let coly,...,col, be the columns of the
matrix A7. We can write:

Alyi1 = coliyi—1,1 + - .. + colpyi—1 2. (3.31)
From (3.28), we have
S; = {col1yi—1,1 + ...+ colpnYi—1,n | yi1 € Yi_1 }. (3.32)

Thus, each edge of S; is parallel to a column col;, is generated by the corre-
sponding interval Y;_1 ; and has a length

lj = lleoljllaw(Yie1,;) (1 <j <n). (3.33)

Lohner first rearranges the columns of A} in decreasing order of the values
;. The resulting matrix can be written as AP where P is an appropriate
permutation matrix. For our example, we have

Ilh =v42+621=+/52,
ly =v22+121=1+/5.
Since l; > I3, the matrix A} remains unchanged and P is the identity matrix.

If we had I; < I, then the two columns of A} would be swapped and we would
have

(3.34)

P:[(l) (1)] (3.35)

The idea is then to perform a QR-factorization [Atk88] of the matrix A¥P:
QR = AP (3.36)

where Q) is an orthogonal matrix and R an upper-triangular matrix, and to
choose M; = Q as a coordinate transformation matrix. Let Z;_; = PTY;_;
and observe that Z;_; is a permutation of the intervals composing Y;_; such
that the components of Z;_, generate edges of S; of decreasing lengths. Since
a permutation matrix P is always orthogonal, i.e. P~! = PT we can write:

P, = {My;|yi € (M A})Y;i1}
= {My;|yi€ (M; A;P)Z;_1}
= {Quilyi € (QTA;P)Z;_1}

Si = {Afyi1|yi1 €Y1}
{QRPTy; 1 |yi_1 € Yi1}
= {Qui|yi € {Rzi—1 | 2i—1 € Zi—1}}.

Since R is a triangular matrix, it follows that
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e An edge of P; generated by the interval Z; ;; is parallel to the longest
edge of S; (which is parallel to the first column of Q);

e An edge of P; generated by the interval Z;_ 5 is parallel to the projection
of the second longest edge of S; on the (n — 1)-dimensional space that is
orthogonal to the first column of Q);

e An edge of P; generated by the interval Z;_; 3 is parallel to the projection
of the third longest edge of S; on the (n — 2)-dimensional space that is
orthogonal to the two first columns of Q;

e And so on.

In practice, we perform the QR-factorization in usual floating-point arithmetic.
Because of rounding errors, the matrix M; is thus a floating-point approximation
to an orthogonal matrix. Therefore, starting from the transpose of the matrix
M;, we enclose M, i_l in interval arithmetic. Lohner’s QR~factorization technique
is currently the best general scheme for computing a coordinate transformation
matrix M;.

3.3.5 Order of an ITS Method

It can be shown (see e.g. [Ned99]) that the overestimation in the local error
term h?(B;), in an ITS method is O(h?™), provided that w(B;) = O(h;). As
a consequence, an ITS method with parameter p, denoted ITS(p), is of order p
(since the order of a method is the order of the local error minus 1).

3.4 Interval Hermite-Obreschkoff Method

Recently, a new approach was proposed for computing a tight enclosure in the
forward process, namely Nedialkov and Jackson’s interval Hermite-Obreschkoff
(IHO) method [NJ99, Ned99]. The Taylor series based methods presented in
the previous section are explicit methods as the computation of the enclosures
simply consists in the evaluation of an interval Taylor series together with a
bound on the associated error term. Instead, the IHO method is implicit as
it requires to solve a nonlinear system of equations. In standard numerical
analysis, Hermite-Obreschkoff methods are usually interesting for stiff problems
(note that implicit methods are known to be more appropriate for stiff prob-
lems). The THO method however is not targeted specifically to stiff problems
but is designed to be a general-purpose method that has a better precision for a
smaller computation cost than the explicit validated methods based on Taylor
series.
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3.4.1 The Hermite-Obreschkoff Relation

We first present the Hermite-Obreschkoff relation, which is the basis of the THO
method. Let L N
¢ (g+p—3J)
P = - 3.38
7t (g9 (3.38)

where p,q,j > 0. It can be shown that the following relation holds:

hp+q+1

q P

!
-1 jcq’phJ hd () 4+ q_ TP £p+q+1) ;
(-1) =y 0)jit+(—1) ) p+q+1) (&)

7=0 7=0

(3.39)
where tg < & < t1, 1 <4 < n. It is interesting to observe that the Hermite-
Obreschkoff relation (3.39) is actually a generalization of both the explicit and
implicit Taylor series relations:

e If p> 0 and ¢ = 0, then (3.39) becomes an explicit Taylor series relation:

hl’+1

V4
=" 1 (o) i + —ulP (€); (3.40)
= T+

e If p=0and ¢ > 0, then (3.39) becomes an implicit Taylor series relation:

- +1 h(fﬂ (q+1)
E (u1)j; + (—1)4 u; i) 3.41
= 1 75 ( ) (q + 1)| (€ ) ( )

Note that Rihm [Rih98] proposed an interval method based on (3.41).

3.4.2 The THO Method

The THO method computes an enclosure of the solution set at ¢; in two phases,
denoted as predictor and corrector by Nedialkov [Ned99]:

1. Predictor: compute a first (coarse) enclosure of the solution set at ¢ using
an interval Taylor series method of order ¢ + 1;

2. Corrector: tighten this enclosure by enclosing the solution of the Hermite-
Obreschkoff relation (3.39).
The Predictor

The predictor used in THO is based on a mean-value Taylor method. Given a
matrix M;_, and a box Y;_; in the coordinate system induced by M;_1, both
computed at the previous step ¢ — 1 in the corrector (see below), the predictor
computes a box D by the formula

D? = (AiM;_1)Yi 1 + K, (3.42)
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where
q .
A = Y WI(Di ), (3.43)
7=0
q .
Ki = Y B(m(Di1));+hi" (Bi)gsr. (3.44)
7=0

The Corrector

The first step in the derivation of the IHO method consists of considering the
mean-value form of the Hermite-Obreschkoff relation (3.39). By the Mean-Value
theorem, (3.39) can be rewritten as

q q
¢S (1R ()i + | D1V EPHT ()i | (=)
7=0

=0

P
qp, Py i
E ] (mo) i E ¢ M1 T (vi)ji | (o —mo)

Jj=0
ptq+1
hy

q!p! (p+a+1)
G+l prqgrDlt (&) (3.45)

where tg < & < t1, p; is on the straight line between m; and u;, and v; is on
the straight line between mgy and wg, 1 < i < n. Let us define the following
quantities:

+(=1)

q
Ap = Y (YT I(DY);, (3.46)
7=0
p
Af = Y 2B I (D), (3.47)
7=0
P . q
Ki = 3 him(Di)); = Yo (-1) e him(DD));
=0 =0
a'P! gt
+(—1)thf T (Bi)pg+1- (3.48)

At the i-th integration step, an interval extension of the relation (3.45) is given
by
Ai (D; =m(D})) = Af (Di-1 = m(Di 1)) + K. (3.49)

(3

This relation is a linear interval system of equations in the variable D;. We
would like to invert the matrix A; to make (3.49) explicit in the variable D;.
However, as pointed out by Nedialkov [Ned99], computing a tight enclosure of
the inverse of an interval matrix is NP hard in general. For this reason, we first
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apply the midpoint technique (see Section 2.6) to (3.49), so that we only need
to enclose the inverse of a point matrix. We obtain:

m(A7)(Di=m(D7)) = Af (Di—1 =m(Di-1))—s(A7 ) (D} =m(DY))+ K;. (3.50)

By inverting the matrix m(A; ), we obtain the interval relation

Di —m(DY) = (m(A7) " AF)(Di-1 — m(D;-1))
—(m(A7) 7 s(A7))(D} = m(DY)) + m(A7) T K (3.51)
In practice, m(A;)~" is not a point matrix but an enclosure of the inverse of
m(A; ), because of rounding errors. Several techniques can be used to com-
pute m(A;)™!, e.g. the method of Rump [Rum92, Rum93]. Note that in the
THO method, the interval matrix m(A; )~'s(A;) =m(A; ) 1(4; —m(4;)) is

K3

replaced with m(A4;)~*A; — I. The equation (3.51) is thus transformed into
D; = m(DY) = Gi(Di—1 = m(Di-1)) + Hi(D} = m(DY)) +m(A7) " K; (3.52)
where
Gi = m(4;)r4F, (3.53)
H, = I-m(A;)4;. (3.54)

The last step in the derivation of the THO method consists of introducing co-
ordinate transformations in the formula (3.52). At each integration step i, we
define a local coordinate system by the affine transformation

We then compute two boxes D; and Y;, respectively in the original and local
coordinate systems, as

D; = [m(D?)+ (GiM;_1)Yi—1 + Hy(D? — m(DY))
+m(4;)'K;] n DY, (3.56)

Y, = (M;7YGiM;1))Yi + (M Hy) (D] — m(DY))
+(M;'m(A;)"HK; + M, (m(DY) — m(D;)). (3.57)

Note that D; is used to compute the components of the formula (3.57) at step
i+ 1, while Y; is used to propagate the solution via the formula (3.57) (see also
Section 5.5). The intersection with the predicted box D? in (3.56) guarantees
that the corrector never produces a wider enclosure than D?. The IHO method
uses Lohner’s QR-factorization technique to compute a coordinate transforma-
tion matrix M;.

3.4.3 Order of the IHO Method

Nedialkov shows that the overestimation in the term AYYY™(B;) i1 is
O(RP*9H2) | provided that w(B;) = O(h;) (see [Ned99]). As a consequence,
the THO method with parameters p, ¢, denoted THO(p, q), is of order p+ g + 1
(since the order of a method is the order of the local error minus 1).
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3.4.4 Reuse of Taylor coefficients and Jacobians from the
Predictor

Finally, it is important to note that the quantities

B (m(D; 1));, j=1,.-.,4, (3.59)

occuring respectively in the formulas (3.47) and (3.48) have already been com-
puted in the predictor (respectively in the formulas (3.43) and (3.44)), and they
are thus not recomputed in the corrector as long as we have p < q. Nedialkov
claims that usually a good choice for ¢ is ¢ € {p,p+ 1,p + 2} [Ned99].

3.4.5 Comparison with ITS Methods

Nedialkov and Jackson have shown [NJ99, Ned99] that for the same order and
step size, the IHO method has smaller local truncation error, better stability,
and requires fewer Jacobian evaluations than an ITS method (which is in general
the most costly part of the methods). Consider an ITS(r) and the THO(p, q)
methods. Let p = g and r = p+¢+1. For simplicity, we assume that (the natural
encoding of) function f contains only arithmetic operations. We denote by Ny
the number of %, / operations in f, and by N, the number of + operations. In
ITS, we generate r — 1 Jacobians J(D;—1)1,-..,J(D;i—1)r—1. From Appendix
B, the number of interval arithmetic operations needed to generate these r — 1
Jacobians is given by:

(r —1)?nN; + O(rnNy). (3.60)

In IHO, we generate p = (r — 1)/2 Jacobians J(Di-1)1,.-.,J(Di—1), and
g =p= (r—1)/2 Jacobians J(Di)1,...,J (D;)q. The corresponding number
of interval arithmetic operations is thus given by:

2
(r 21) nNy + O(rnNy). (3.61)
Thus, an ITS method requires approximately twice as many operations as the
THO method of the same order to generate the Jacobians. The extra cost in
the corrector in the THO method is one matrix inversion and a few matrix
multiplications. In general, compared to an ITS method, the IHO method
produces tighter enclosures in less time.

3.5 Other Approaches

3.5.1 Taylor Models

Recently, Berz and Makino [BM98] proposed a method, called the Taylor mod-
els, for reducing the wrapping effect. Their method is based on high-order
Taylor series expansions with respect to both time and the initial conditions.
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The arithmetic operations and standard functions take Taylor polynomials as
operands. Berz and Makino’s scheme validates existence and uniqueness, and
computes a tight enclosure of the solution set at each integration time ¢; in one
process (contrary to the ITS and THO methods). Note that this is similar to
Lohner’s polynomial enclosure approach [Loh95].

3.5.2 The Piecewise Method

In [DJVH98, DJVH98a], we proposed the piecewise method for advancing the
solution from ¢y to ¢1. Its basic idea is to take an interval extension S(tg, Do, t1)
of the solution s(tg,uo,%t1) to an ODE, and to both minimize and maximize
each component of the function S on the domain Dg. These 2n optimization
problems can be solved using consistency techniques as in the NUMERICA system
[VHMDO7]. The interval function S can be realized by means of any existing
interval method, e.g. an ITS method. We also showed how to integrate local
coordinate transformations in our piecewsie method to reduce the wrapping
effect. See [DJVH98, DJVH98a] for more details about the piecewise method.

3.5.3 Comparison with ITS and IHO Methods

The Taylor models approach requires arithmetic with Taylor polynomials, which
makes it significantly more expensive computationally than ITS or THO meth-
ods. The piecewise method requires to solve 2n optimization problems at each
step of the integration and is also significantly more costly than ITS or THO
methods. However, the Taylor models and the piecewise methods can become
interesting when the size of the initial conditions (i.e. of the box Dy) is very
large. In that case, the IHO method and efficient ITS methods such as Lohner’s
method will perform badly because they are based on mean-value forms, which
require that the initial conditions be of sufficiently small size (see Section 2.5).
Since the Taylor models and the piecewise method are not based on mean-value
forms, they will generally be successful for large interval initial conditions. In
that sense, they are orthogonal to the ITS and THO methods.



Chapter 4

The Constraint Satisfaction
Approach

The constraint satisfaction approach followed in this work was first presented
in [DJVHO8]. It consists of a generic algorithm for ODEs that iterates three
processes:

1. A bounding box process that computes bounding boxes for the current step
and proves (numerically) the existence and uniqueness of the solution;

2. A predictor process that computes initial enclosures at given times from
enclosures at previous times and bounding boxes;

3. A pruning process that reduces the initial enclosures without removing
solutions.

Bounding box and predictor components are standard in interval methods for
ODEs. This work thus focuses on the pruning process, the main novelty of the
approach.

Our pruning component is based on relaxations of the ODE, o fundamental
concept in the field of constraint satisfaction.

To our knowledge, no other approach uses relaxations of the ODE to derive
pruning operators and the only other approaches using a pruning component
[NJ99, Rih98] were developed independently. Note also that, in the following,
predicted boxes are generally superscripted with the symbol — (e.g., D ), while
pruned boxes are generally superscripted with the symbol * (e.g., D).

4.1 Constraints in Nonlinear Programming

The pruning component uses safe approrimations of the ODE to shrink
the boxes computed by the predictor process. To understand this idea, it
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is useful to contrast the constraint satisfaction to nonlinear programming
[VHMK97, VHMD97] and to ordinary differential equations. In nonlinear pro-
gramming, a constraint ¢(z1,...,%,) can be used almost directly for pruning
the search space (i.e., the Cartesian product of the intervals I; associated with
the variables z;). It suffices to take an interval extension C'(Xi,...,X,) of the
constraint. Now if C'(Ij,...,I}) does not hold, it follows, by definition of inter-
val extensions, that no solution of ¢ lies in I x ... x I|. The interval extension
can be seen as a filter that can be used for pruning the search space in many
ways. For instance, Numerica uses box(k)-consistency on these interval con-
straints [VHMDO7]. Ordinary differential equations raise new challenges. In an
ODE V t: ' = f(u), functions u and u’ are, of course, unknown. Hence it is
not obvious how to obtain a filter to prune boxes.

4.2 Constraints in ODEs

One of the main contributions of our approach is to show how to derive effective
pruning operators for parametric ODFEs. The first step consists in rewriting the
ODEV t¢: u' = f(u), in terms of its multistep solution ms to obtain

Vit %(t,u, t) = f(ms(t, u,t)). (4.1)
Let us denote this relation V ¢ : fI(t,u,t). This rewriting may not appear useful
since ms is still an unknown function. However it suggests a way to approximate
the ODE. Indeed, we show in Chapter 6 how to obtain interval extensions of ms
and agzs by using Hermite polynomial interpolations together with their error
terms. This simply requires a bounding box for the considered time interval
and safe approximations of ms at successive times, both of which are available
from the bounding box and predictor processes. Once these interval extensions
are available, it is possible to obtain an interval relation of the form

Vt:FL(t,D,t) (4.2)

which approximates the original ODE safely in the sense that, if FL(t, D, t) does
not hold for a time ¢, it follows that no solution of the ODE can go through
boxes Dy, ..., Dy at times i, . . ., t; (we say that the relation FL is sound). The
above relation is still not ready to be used as a filter because ¢ is universally
quantified. The solution here is simpler and consists of restricting attention to
a finite set T of times (possibly a singleton) to obtain the relation

Vt € T:FL(t,D,t) (4.3)

which produces a computable filter. The relation FL is a relazation of the ODE
(4.1) in a constraint satisfaction sense [VH98], i.e., given a time ¢, it produces a
relation that can be used to prune the domain of the variables. The so-obtained
relation is in fact a conservative approximation of the actual ODE at the given
time. The following definition and proposition capture these concepts more
formally.
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Figure 4.1: Geometric Intuition of the Multistep Filter.

Definition 6 (Multistep Filter) Let O be an ODE and s its solution. A
multistep filter for Q is an interval relation FL : R¥+t! x (IR?)k+! x R — Bool
satisfying

u; € Dy

s(to, w0, t;) = u; (0 < i < k) } = Vt: FL(t,D,1). (4.4)

The variable t is called the evaluation time of the multistep filter.

Proposition 1 (Soundness of Multistep Filters) Let Q be an ODE and let
FL be a multistep filter for Q. If FL(t,D,t) does not hold for some t, then there
exists no solution of QO going through D at times t.

How can we use this filter to obtain tighter enclosures of the solution? A simple
technique consists of pruning the last box computed by the predictor process.
Assume that D} is a box enclosing the solution at time ¢; (0 < ¢ < k) and that
we are interested in pruning the last predicted box D, . A subbox D C D, can
be pruned away if the condition

FL(t,(Dg, . .., Dg_1, D), tc) (4.5)

does not hold for some evaluation point t.. Let us explain briefly the geometric
intuition behind this relation by considering what we call natural filters. Given
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interval extensions MS, DMS and F respectively of ms, Bgf and f, it is possible
to approximate the ODE u' = f(u) by the relation

DMS(t,D,t) = F(MS(t,D,1t)). (4.6)

In this relation, the left-hand side of the equation represents the approzimation
of the slope of u while the right-hand represents the slope of the approximation of
u. Since the approximations are conservative, these two sides must intersect on
boxes containing a solution. Hence an empty intersection means that the boxes
used in the relation do not contain the solution to the ODE system. Figure
4.1 illustrates the intuition. It is generated from an actual ordinary differen-
tial equation, considers only points instead of intervals, uses an interpolation
polynomial as an approximation of u, and ignores error terms for simplicity.
It illustrates how this technique can prune away a value as a potential solu-
tion at a given time. In the figure, we consider the solution to the equation
that evaluates to ug and u; at to and t; respectively. Two possible points uy
and u), are then considered as possible values at 3. The curve marked KO de-
scribes an interpolation polynomial going through ug,u;,ub at times to,t1, ta.
To determine if u} is the value of the solution at time t3, the idea is to test
if the equation is satisfied at time t.. (We will say more about how to choose
t. later in this work). As can be seen easily, the slope of the interpolation
polynomial is different from the slope specified by f at time t. and hence u)
cannot be the value of the solution at ¢5. The curve marked OK describes an in-
terpolation polynomial going through ug,u1,us at times tg,t1,t2. In this case,
the equation is satisfied at time t., which means that us cannot be pruned
away. The filter proposed earlier generalizes this intuition to boxes. Both the
left- and the right-hand sides represent sets of slopes and the filter fails when
their intersection is empty. Traditional consistency techniques and algorithms
based on this filter can now be applied. For instance, one may be interested
in updating the last box computed by the predictor process using the operator
Dy = 0O{r € D, | FL(t,(Dg,...,D;_;,7),t.)}. Observe that this operator
uses an evaluation time t, and one of the main results of this work consists in
showing that t. can be chosen optimally (in an asymptotic sense, see Chapter 7)
to mazimize pruning. The following definition is a novel notion of consistency
for ODEs to capture pruning of the last r boxes.

Definition 7 (Backward Consistency of Multistep Filters) A multistep
filter FL is backward-consistent in (t,D) for time e if

D, =0 {uk € Dy, | Jug € Do : FL(t,u, e)} . (47)
A system of r successive multistep filters {FL;},;., is backward(r)-consistent
in (to. k+r_1, Do..k+r_1) for time vector (eo,...,er_1) if
Dy ktr-1 = O{uk ptr—1 € D pgr—1|Jug € Do :

VO0<i<r: FLi(t gyi, Wi kyir €)}- (4.8)
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Informally speaking, the parameter r in the definition determines the strength of
the consistency, i.e., the number of backward variables on which each variable is
dependent. The following proposition is an immediate consequence of Definition
7. Tt states that the strength of the consistency increases with the parameter r.

Proposition 2 (Property of Backward Consistency) If a system of r+ 1
(r > 0) successive multistep filters {FL;},;, is backward(r 4+ 1)-consistent in
(to. kir, Do.kyr) for time vector (e, ...,e,), then the system

1. {FLi}o<;c, 18 backward(r)-consistent in (to. rir—1,Do.ktr—1) for time
vector (e, ..., €r_1);

2. {FL;i}, <;<, 15 backward(r)-consistent in (t1. gyr,D1.r4r) for time vector
(e1,-.-s6n).

In the next chapter, we introduce coordinate transformations in multistep fil-
ters to represent the sets of solutions compactly, i.e., to handle the wrapping
effect (see Section 5.5). It is thus useful to generalize the above definition by
introducing affine transformations.

Definition 8 (Generalized Backward Consistency) LetY; € IR” (i € N).
A multistep filter FL is backward-consistent in (t,Y) for time e if there exists
an invertible affine transformation a : R**¢+1) 5 Re(k+1) gyeh that

Y = D{yk €Yy | Jyo € Yo : FL(t,a(y),e)}. (49)

A system of r successive multistep filters { FL; }o<i<, is backward(r)-consistent
in (to..k+r—1, Yo.ktrr—1) for time vector (eq,...,e.—1) if there exists an invert-
ible affine transformation ag_gyr—1 : RPEHT) 5 R+ such that

Yibtr—1 = O{¥ektr—1 € Yi kyr—1 | Iyo € Yo :
V0 <4 <r: FLi(t;. kti> i k+i(Yo.k+r—1),€i)}.  (4.10)

Note that Proposition 2 also holds for generalized backward consistency. In
the rest of this work, we use “backward consistency” instead of “generalized
backward consistency” for simplicity. The algorithm used in our computational
results enforces backward(k)-consistency of a system of k filters we describe in
the next chapter.
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Chapter 5

Multistep Filters

Filters rely on interval extensions of the multistep solution and of its derivative
wrt t. These extensions are, in general, based on decomposing the (unknown)
multistep solution into the sum of a computable approximation p and an (un-
known) error term e, i.e.,

ms(t,u,t) = p(t,u,t) + e(t,u,t). (5.1)

There exist standard techniques to build p and % and to bound e and %.
Chapter 6 reviews how they can be derived from Hermite interpolation polyno-
mials. Here we simply assume that they are available and we show how to use
them to build filters.

5.1 Natural Filters

Chapter 4 explained how natural multistep filters can be obtained by simply
replacing the multistep solution ms, its derivative Bgzs and the function f by
their interval extensions MS, DMS and F' to obtain

DMS(t,D,t) = F(MS(t,D,1)). (5.2)

It is not easy however to enforce backward consistency on a natural filter since
the variables may occur in complex nonlinear expressions. This problem is
addressed by mean-value filters that we now study.

5.2 Mean-Value Filters

5.2.1 Mean-Value Forms

As mentioned in Section 2.5, mean-value forms (MVFs) play a fundamental role
in interval computations and are derived from the Mean-Value theorem. They
correspond to problem linearizations around a point and result in filters that
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are systems of linear equations with interval coefficients and whose solutions
can be enclosed reasonably efficiently. Mean-value forms are effective when the
sizes of the boxes are sufficiently small, which is the case in ODEs. In addition,
being linear equations, they allow for an easier treatment of the wrapping effect,
a crucial problem in interval methods for ODEs presented in Section 2.4 and
to be discussed in Sections 5.3 and 5.5. As a consequence, mean-value forms
are especially appropriate in our context and will produce filters which are
efficiently amenable to backward consistency. The rest of this section describes
how to obtain mean-value filters.

5.2.2 Implicit Mean-Value Filters
Consider the function

4(t,u,e,de,t) = 6—€(t,u, t) +de — f(p(t,u,t) +e). (5.3)
If the multistep solution ms is defined at (t,u), i.e. the ODE has a solution

going through wug,...,u at to,...,tx, then, by (5.1), we have the relation

Oe

6(t7 u, e(t7 u, t)a E

(t,u,t),t) =0. (5.4)
Let u*,u € D € IR**+Y ¢* ¢ € E € IR" and de*,de € DE € IR". By the
Mean-Value theorem, we can write (1 <i <n)

5i(t,u, e, de,t) — 5i(t,ll*,e*,de*,t)
+L7(u,e,de)6i(t,ui, 51', C,', t) (ll — ll*, e — 6*, de — de*)
(5.5)
= 5i(t,u*7e*7de*7t) + ¢i(taﬂi;§i,t)(u _ u*)
+¢l(t7 Mi,£i7t)(€* - 6) + dei — de;*

where

d)i(t: l"’i)&iat) =Ju %I:; (ta/f’iat) - jfi(p(taﬂiat) + §i)-7up(tauiat) (56)
¢i(t;ﬂi;§i;t) = sz(p(thuzat) +£z)

for some p; € D%, & € E and (; € DE. This allows us to define a new
multistep filter, which we will call an implicit mean-value filter. Such a filter is
parametrized by the initial domain D° of the variable u.

Definition 9 (Implicit Mean-Value Filter) An implicit mean-value filter
for ODE ' = f(u) in D® € IR™*+1) s an interval relation

FL(t,D,t) &
d(t,m° me, mge,t) + A(t, D%, E(t,D°,¢), DE(t,D°,t),t) (X, Ep, DE,) =0
(5.7)
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where

A is an interval extension of the function Jy,e,qge)9,

E and DE are interval extensions resp. of e and %7,

D C D, (5.8)
X=D-m’E, = E(t,D°t) —m,,DE,, = DE(t,D°,t) — mge,

m® = m(DO), m, = m(E(t, D%, 1)), ma, = m(DE(t, D°, 1)).

Note that the Jacobians in (5.8) can be computed by means of automatic dif-
ferentiation tools (see Section 2.7). The following proposition states that an
implicit mean-value filter does not eliminate any solution of the ODE. It is a
direct consequence of the Mean-Value theorem.

Proposition 3 An implicit mean-value filter for ODE O is a multistep filter
for O.

5.2.3 Explicit Mean-Value Filters

In general, for initial value problems, we will be interested in pruning the last
predicted box D, . Hence it is convenient to derive a mean-value filter which is
explicit in Dy. Let D~ € IR**+1) be the predicted box of variable u and define
X as D —m(D7). An implicit mean-value filter is an interval constraint of the
form

B()X =T (t) (5.9)

where ®(t) € IR"*™*+1) and I'(t) € IR". Let us apply the midpoint technique
(see Point 2 of Section 2.6) on the matrix ®(¢). We can write ®(t) = m(®(t)) +
5(®(t)) and

m(®(t))X =I'(t) — s(®(t))X. (5.10)
The term s(®(¢))X is normally small (of size O(||w(D7)[|?)) and we can sub-

stitute X on the right side of (5.10) for s(D~), since X =D — m(D~) and we
are looking for a pruned box D* C D~. We obtain the system

m(®(t))X =T(t) — s(2(¢))s(D7). (5.11)
Equation (5.11) can now be rewritten as
k
> At X = K(1) (5.12)
=0

where A;(t) € R**" ¢ = 0,...,k and K(t) € IR". Let us isolate the term
involving Xy, :

Ar()X, = K(t) = > Ai(t)X;. (5.13)
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Multiplying both sides of (5.13) by Ag(t)~! (recall that Ax(t)"! denotes an
enclosure of the inverse of Ay (t)) gives

k—
Xy = Ag(t ) X;. (5.14)
z:O

[u

We are now in position to define explicit mean-value filters which play a funda-
mental role in our approach.

Definition 10 (Explicit Mean-Value Filter) An explicit mean-value filter
for ODE © in DO € IR™**+1) 45 an interval relation

k—l
FL(t,D,t) & X = Ak )Xz (515)
z:O
where
X=D- m(DO),
D C DY,

(Ag(t) - Ap(t)) = m(®(t)) € RP*" k+1)

K(t) =T(t) — s(®(t))s(D°) € IR",

the relation ®(¢)X = I'(¢) is an 1mphcit mean-value filter for @ in DP°.
(5.16)

Proposition 4 An explicit mean-value filter for ODE O is a multistep filter
for O.

It is easy to use an explicit mean-value filter to prune the predicted box D, at
time t; given the boxes Dyg,...,D;_; from the previous integration steps, since
X}, (and thus Dy,) has been isolated. The filter simply becomes

k—1
Dy, =m(Dy) + Ay(t) 'K () = > (Ak(t) 7' 4i(1)) (D} —m(D}))  (5.17)
=0

and the pruned box Dj at time ¢}, is given by
Dy =DpND,. (5.18)

It follows directly that the explicit mean-value filter is backward-consistent in
D*.

5.3 Problems in Mean-Value Filters

Mean-value filters often produce significant pruning of the boxes computed by
the predictor process. However, they suffer from two limitations: the wrapping
effect which is inherent in interval analysis and a variable dependency problem
induced by the use of a multistep method. We review both of these before
describing how to address them.
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Figure 5.1: (a) A zonotope in R? and the smallest enclosing box; (b) Coordinate
transformation where the enclosing box fits better the zonotope.

5.3.1 Wrapping Effect

As described in Section 2.4, the wrapping effect is the name given to the over-
estimation that arises from approximating a set by a box. In the context of
ODEs, the set of solutions at each integration step is over-approximated by a
box. These over-approximations accumulate step after step and may result in
an explosion in the sizes of the computed boxes. The standard solution used
in interval methods for ODEs to obtain tighter solution bounds is to choose,
at each step, an appropriate local coordinate system to represent the solutions
compactly (see [Loh87], [NJ99]). How does the wrapping effect occur in our
context? Let us rewrite an explicit mean-value filter as

k—1
Xp=Kt)+)_ Ait)X; (5.19)
1=0

and let us assume that Ag(t),..., Ar_1(t) are point matrices and that K (¢) is
a point vector. Given the boxes Xg,..., Xr_1 computed at the previous steps,
the exact solution set to be enclosed by X} is

k—1
Z= {K(t) +3 40z | (o, -, T41) € (XO,...,Xk_l)} . (5.20)

=0

The set Z is called a zonotope ! (i.e., a generalization of a parallelepiped).
Figure 5.1 (a) illustrates a zonotope in R? (for k = 3) and its smallest enclosing
box. As can be seen, the box significantly overestimates the zonotope. Figure

INote that W. Kiihn uses zonotopes in another context, i.e. as enclosures to represent the
solution sets compactly [Kuh98, Kuh98a, Kuh99].
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5.1 (b) shows that the zonotope can be enclosed much more tightly by using
a coordinate transformation. It should be mentioned however that finding a
good coordinate system is not necessarily a trivial task (e.g., one idea is to
find approximations of the main directions of the zonotope) and may not be
sufficient because of the variable dependency problem that we now discuss.

5.3.2 Variable Dependencies in Explicit Filters

Consider the application of an explicit mean-value filter at two successive time
steps with respective evaluation times eg and e;. We obtain equations of the
form:

X = KO(CO) + Ao,o(eo)X() + ...+ AO,k—l(eo)Xk—h

5.21
Xk+1 = Kl(el) +A170(61)X1 +...+A1’k_1(€1)Xk. ( )

The second equation computes the box X1 assuming that Xi,..., Xy are
independent, which is not the case because of the first equation. Hence, the
dependencies between Xi,..., X} are lost when moving from the first to the
second time step. The variable dependency problem arises because successive
explicit mean-value filters overlap, i.e., each computed box X; is used in k
successive filters. One-step methods do not encounter this problem because each
computed box X; is used only at one time step to compute the following box
Xi+1- Global filters, which are presented in the next section, avoid this variable
dependency problem and make it possible to apply standard techniques for the
wrapping effect.

5.4 Global Filters

The main idea underlying global filters is to cluster several mean-value filters
together so that they do not overlap. The intuition is illustrated in Figure 5.2
for k = 3. It can be seen that the global filter prunes the 3 predicted boxes Dj,
D, , and Dy for times t3, t4, and ¢5 using the boxes Dg, DT, and D3 computed
for times tg, t1, and t5. Observe also that global filters do not overlap, i.e., the
boxes D§, D7, and D3 will not be used in subsequent filters. More precisely, a
global filter is a system of k successive explicit mean-value filters.

Definition 11 (Global Filter) A global filter for ODE O in DJ ,, , is a
system {FL;(t; k4i, Di. k+i,€i) bo<ick of k successive explicit mean-value filters

for O respectively in DY ,...,D%_, .| given as
X = Ko(e()) + AO’O(eo)XO + ...+ Aoik_l(eo)Xk_l
Xk+1 = Kl(el) +A1’0(61)X1 +...+A17k_1(61)Xk
Xok—1 = Kp_1(ep—1)+ Ap—1,0(€h-1)Xp—1+ .. + Ap—1,k-1(€p—1)Xop—2

(5.22)
where Xo..2—1 = Do..2p—1 — m(DY_o_;)-
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Figure 5.2: Intuition of the Globalization Process (k = 3).

The key idea to remove the variable dependency problem is to solve (5.22)
globally by transforming the global filter into an explicit form

Xk XO
: = C(eo) : + R(eo) (5.23)
Xog—1 Xk-1
or, more concisely,
X; = C(eo)Xo + R(eo) (524)

where C'(eg) € IR™> " and R(eq) € IR™.

An interesting property of global filters is that each pruned box at times t3, t4,
or t5 can be computed only in terms of the predicted boxes and the boxes at
times %o, t1, and t; by using Gaussian elimination. Consider, for instance, a
system with k = 3. We obtain

X3 = AgoXo + A1 X1 + Ao2 X2 + Ko
Xy = A10X1 + A Xo + A2 X3 + Ky (5.25)
Xy = ApXo + A X3+ A Xy + K>

Variable X, can be eliminated from the last equation to obtain
Xy = Ao Xa + A1 X3 + Ao (A10 X1 + A11 X2 + A1 X3 + K1) + Ka. (5.26)

To avoid multiplying interval matrices (e.g., A22 A1), we can apply the midpoint
technique (see Point 1 of Section 2.6) to obtain

X5 = AypXo+ As1 X3+ m(Azn)(A10X1 + A Xo + 412 X3 + Ki) (5.27)
+K2 + S(AQZ)S(DZ). ’

By distribution and rearrangement of the parentheses, we can rewrite (5.27) as

X5 = (m(A)Ai0)X1 + (Az0 +m(Aza)A11)Xs + (Aa1 + m(As2)A12) X3
+m(A22)K1 + K2 + S(AQQ)S(DZ).
(5.28)
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function EXPLICITGLOBALFILTER(Q, to, DY, B1.x—1,t1, DY, By, e)
begin

1 fori:=0 tok—-1 do
2 (Ki, Aigs -+, Aig—1) 7= EMVFL(O, t;_iyx, DY ;44> Biy1 itk €i);
3 endfor
4 fori:=k—1 downto 0 do
5 R; := Kj;
6 for [ :=¢ downto 1 do
7 A* = m(Ai,k_l);
8 R, :=R;+ A*K; 1 + S(Ai,k—l)s(D2+l_1);
9 for j:=k—1 downto 1l do
10 Ai’j = Ai’jfl + A*Alfl’j
11 endfor
12 Ai,(] = A*Al—l,(]
13 endfor
14 endfor
15  return ((4;;) S5isel (Ri)ogigk_1)
end

Figure 5.3: An Algorithm for Computing an Explicit Global Filter.

Variable X3 can be eliminated from this equation in a similar fashion to obtain
a filter involving only X5, Xy, X1, and X,. Similarly, variable X3 can be
eliminated from the second equation to obtain a filter only involving X4, X,
Xl, and X2.

A generic algorithm for computing an explicit global filter is given in Figure
5.3. It receives as input the ODE system O, the previous integration times
to, the pruned boxes DY, and the bounding boxes B1. x_1, the new integration
points t1, the predicted boxes DY for these integration points, the bounding
boxes B; for the new integration points, and the evaluation times for the filters.
It generates the matrix and vectors of the explicit global filter which can be used
to compute the pruned boxes. The resulting filter is backward(k)-consistent with
respect to the resulting boxes. Its precise specification is as follows.

Specification 1 (EXPLICITGLOBALFILTER) Let B; be a bounding box of ODE
O over [t;_1,t;] wrt (to, Dg), for 1 <i <2k —1. Let

(C(eo), R(eo)) = ExPLICITGLOBALFILTER(Q, to, DY, By 1_1,t1, DY, By, ep),

(5.29)

Xo = Do — m(D}), and X; = Dy — m(DY). Then, the system S : X1 =
C(eo)Xo + R(eo) is a global filter for O in (D, D?).

The algorithm is generic in the sense that it uses the function EMVFL to
generate an explicit mean-value filter. How to generate such a filter is discussed
in Chapter 6 but its specification is given as follows.
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Specification 2 (EMVFL) Let B; be a bounding box of ODE QO over
[tz'_l,ti] wrt (to,Do), fOT‘ 1 S ) S k. Let <K(t),A0(t),...,Ak_1(t)) =
EMVFL(Q,t,D°%, (By,...,B),t). Then, the interval relation

k—1
FL(t,D,t) & X, = K(t) + Y _ Ai(t)X; (5.30)
=0
where X = D — m(D°) and D C DY, is an eaplicit mean-value filter for Q in
DO.

Finally, observe that global filters not only remove the variable dependency
problem by globalizing the pruning process. They also have the advantage of
producing square systems which makes it possible to apply standard techniques
to address the wrapping effect. The next section discusses the wrapping effect
in detail.

5.5 The Wrapping Effect in Global Filters

The wrapping effect in global filters arises when multiplying a nk x nk matrix
and a box of nk elements. Fortunately, since the matrices in global filters are
square, the wrapping effect can be handled as in one-step methods by using local
coordinate transformations and QR factorizations [Loh87]. We now explain this
process in detail. Initially, starting from the previous boxes D§ and predicted
boxes D; , we need to solve the system

D; —m(D7) = Ci(eo)(Dg — m(Dg)) + Ri(eo) (5.31)
or, equivalently, the system
X =C (eo)Xo + Ry (60) (5.32)

where X; = D; —m(D7) and Xo = D§ — m(D{). The pruned boxes are then
obtained by
D; =D; Nn(X; +m(D;)). (5.33)

The key idea in tackling the wrapping effect is to find a good coordinate system
to represent the solution X; compactly so that errors will not accummulate
drastically in subsequent integration steps. For this purpose, we introduce a
coordinate transformation

My, = u — m(D3) (5.34)
which can be reexpressed in terms of the x variables as
My = x1 + m(Dy) — m(D7). (5.35)
We then solve the system
MiY:1 = Ci(eg)Xo + Ri(eg) + m(Dy ) — m(D3) (5.36)
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by inverting the matrix Mi:
Y1 = (M{'Ci(e0))Xo + M ' (Ri(eo) + m(D7) — m(D3)). (5.37)

The matrix M; and the boxes Y; and D7 are then sent to the next integration
step. Observe that Y; is a compact representation of D7 in the local coordinate
system.

In the next integration step, the boxes D} are used (together with other
data) to compute new predicted boxes D, as well as the new global filter

Dy —m(D3) = Cz(e1)(D] — m(D7)) + Ra(e1)). (5.38)

Since Myy; = u; — m(D7) by the coordinate transformation, the above filter
can be rewritten into

Xs = (Cg(el)Ml)Yl + Rg(el) (539)

where Xy = Dy —m(D; ). Observe the associativity of the multiplication which
is critical in reducing the wrapping effect. The new boxes are computed as

D; =D, Nn(Xz2+m(Dy)). (5.40)

Once again, we would like to represent the set of solutions Xy compactly and
we use a local coordinate transformation

Msys = uy — m(D3) (5.41)
to obtain the system
MYy = (Ca(e1)M1)Y1 + Ra(e1) + m(Dy ) — m(D3). (5.42)
This equation system can be solved by inverting Ma:
Y, = (M5 (Co(e1)M1))Y1 + My " (Ra(er) + m(D3) —m(D3)).  (5.43)

Once again, observe the associativity in the multiplication to tackle the wrap-
ping effect. The hope is that the matrix My !(Cy(e;)M;) be diagonally domi-
nant or triangular. Also, Ms, Y, and D} will be sent to the next integration
step. As a consequence, at integration step ¢, we solve

X; = (Ci(ei—1)M;—1)Yi—1 + Ri(ei—1) (5.44)
where X; = D; —m(D; ) and the new boxes are obtained by
D =D; n(X;+m(D;)). (5.45)
The local coordinate transformation

M;y; = u; — m(D}) (5.46)
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function PRUNE((O)7 to , DS, Bl..k—l; Y(), JM'(]7 tl, D1_7 Bl)

begin
1 (C1, R1) := EXPLICITGLOBALFILTER(Q, to, D§, By k—1,t1, D7 ,B1,eo);
2 Cf = ClM();
3 X := CfYo—{—Rl;
4 Dj:=(Xi +m(Dy)) N (Dy);
5 M, := CoORDTRANSFO(CY, Yo);
6 d; := m(D7) — m(D7);
T Y= (m(MT)C)) Yo +m(M7Y) (R + di) + s(M7 (X + d);
8 return (D}, Y, M;)

end

Figure 5.4: The Pruning Algorithm on Global Filters.

is used to compute the new Y; which is given by

Y = (M; 1 (Ci(ei—1)Mi-1))Yi—1 + M; (Ri(ei—1) + m(D; ) — m(D})).
(5.47)
In addition, in order to avoid the costly (see [Knu94]) product of the two interval
matrices Mi_1 and C;(e;_1)M;_1, we use the standard midpoint technique (see
Point 1 of Section 2.6) to obtain
Y; = (m(M;")(Ci(ei—1)M;_1))Yi_1 + m(M; ") (Ri(ei—1) + di)+
s(M; 1 ((Ci(ei-1)Mi-1)Yi 1 + Ri(e;—1) + d;)
(5.48)

where d; = m(D; ) — m(D}). This last system can be rewritten into

Y; = (m(M;")(Ci(ei—1)M;—1))Yi1 +m(M; ") (Ri(ei—1) + dy)

2

+s(Mi’1)(X,» + d,)

by definition of X;. In this process, the choice of an appropriate matrix M; is, of
course, crucial. Lohner’s QR factorization technique [Loh87] is a very successful
scheme to obtain such a matrix.

(5.49)

5.6 A Pruning Algorithm based on Global Fil-
ters

We are now in position to present a pruning algorithm based on global filters.
The pruning algorithm enforces backward(k)-consistency on a global filter com-
posed of k mean-value filters. The algorithm is shown in Figure 5.4 and its
specification is as follows.

Specification 3 (PRUNE) Let ms be the multistep solution of ODE QO and B;
a bounding box of O over [t;_1,t;] wrt (to, Do) for 1 <i<2k—1. Let

(DI, Yl, Ml) = PRUNE(@, to , DS, Bl..k—l; Yo, Mo, tl, D;, Bl), (550)
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Ao = {Moyo + m(Dg) | yo € Yo} ND§ and A1 = {Miy: + m(D7) | y1 €
Y1} ND;. Then,

1. mS((to,tl), (AOJD;)7t’i) g ms((t(btl)? (A07-A1)7ti)) fOT' k S ) S 2k — 1;
2. Dj CD;;

3. there exists a global filter which is backward(k)-consistent in
((to,t1), (Yo,D3)) and in ((to,t1),(Yo,Y1)) for a given time wvec-
tor.

The algorithm receives as input the ODE O, the previous integration times tq,
the pruned boxes D§ computed at times to, the bounding boxes Bi p—1 for
all previous integration steps, the boxes Yy and matrix M, from the previous
integration step as well as the new integration times t;, the predicted boxes D7
and the bounding boxes B; for these integration times. It returns the pruned
boxes D7 for integration steps t1 as well as the new boxes Y; and the new
matrix M; to be used in the next integration step. The algorithm itself follows
the same steps as outlined in the preceeding section. It computes the explicit
form of the global filter (line 1), the new boxes X; (line 2), and the pruned
boxes D7 (line 3). It then computes the new matrix M; (line 4) and the new
boxes Y; (line 6).



Chapter 6

Hermite Filters

In the previous chapter, we assumed the existence of interval extensions of p
and dp/0t and we assumed that we could bound the error terms e and de/0t.
We now show how to use Hermite interpolation polynomials for this purpose.

6.1 Definition

Informally speaking, a Hermite interpolation polynomial approximates a func-
tion g € C™ (for sufficiently large r) which is known implicitly by its values and
the values of its successive derivatives at various points. A Hermite interpola-
tion polynomial is specified by imposing that its values and the values of its
successive derivatives at some given points be equal to the values of g and of
its derivatives at the same points. Note that the number of conditions (i.e., the
number of successive derivatives that are considered) may vary at the different
points [SB80, Atk88, KC96].

Definition 12 (Hermite(c) Interpolation Polynomial) Consider the
ODE u' = f(u) and let 0 = (0g,...,0%) € NFt1 5, £ 0 (0 < i < k) and
o5 = Zf:o o;. The Hermite(o) interpolation polynomial wrt f and (t,u) is the
unique polynomial q of degree < o4 — 1 satisfying

a9 (t;) = jlu;); (0<j<o;i—1, 0<i<k). (6.1)

Proposition 5 (Hermite(o) Interpolation Polynomial) The polynomial
q satisfying the conditions (6.1) is given by

q(t) = Z D il w) i (t) (6.2)
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where
Gigi—1(t) = lig—1(t), i=0,...,k,
o;—1 v . )
(,Oij(t) = ll](t) - Zu:j-i-l lz(])(iz)@w(t), 1=0,...,k, j=0,...,0i — 2,
i) = ST () =0k =0 L
(6.3)

It is easy to take interval extensions of a Hermite interpolation polynomial
and of its derivative. The Taylor coefficients (D;); of the solution specifying
the derivative conditions at the various interpolation points, as well as their
Jacobians J(D;); needed in the mean-value Hermite filters, can be computed
by automatic differentiation techniques (see Section 2.7).

6.2 Bounding the Error Terms

The only remaining issue is to bound the error terms. The following standard
theorem (e.g., [SB80, Atk88, KC96]) provides the necessary theoretical basis.

Theorem 3 (Hermite Error Term) Let p(t,u,t) be the Hermite(c) inter-
polation polynomial in t wrt f and (t,u). Let u(t) = ms(t,u,t), ms(t,u,t) =
p(t,u,t) + e(t,u,t), T = O{to,...,tx, 1}, 05 = Sor_ 0 and w(t) = [[y(t —
t;)°. We have (1<i<n)

1. 3& e T :ei(t,u,t) = Uis!ugas)(&)w(t);

2 38,6, €T %2 (6,1, t) = Lul™ (€,)w' () + oAl ™ (@) ().

How to use this theorem to bound the error terms? If B is a bounding box
(produced by the bounding box process - see Section 3.1) for the ODE over
T = O{to, ..., tk,t} wrt (tg,up), it suffices to compute two boxes (B),, and
(B)s,+1 by automatic differentiation (see Section 2.7). We then obtain

e(t,u,t) € (B)y,w(t);
Be(tu,t) € (B)o,w(t) + (B)o,r1w(t): (6:4)

As a consequence, we can compute an effective relaxation of the ODE by spe-
cializing global filters with a Hermite interpolation polynomial and its error
bound. In the following, filters based on Hermite(o) interpolation are called
Hermite(o) filters and a global Hermite(o) filter is denoted by GHF (o). Note
that Appendix D discusses how to evaluate Hermite polynomials accurately.



Chapter 7

Optimal Hermite Filters

Let us summarize what we have achieved so far. The basic idea of our approach
is to approximate the ODE V ¢t : u' = f(u) by a filter

V t: FL(t,D,t). (7.1)

We have shown that a global filter which prunes the last k¥ boxes by using
k successive mean-value filters addresses the wrapping effect and the variable
dependency problem. We have also shown that a global filter can be obtained
by using Hermite interpolation polynomials together with their error bounds.
As a consequence, we obtain a filter

YV eo : GHF(0)(t, D, o) (7.2)

which can be used to prune the last k& predicted boxes. The main remaining
issue is to find an evaluation time vector ey which miminizes the sizes of the
solution boxes in

GHF(o)(t,D,eg). (7.3)

The purpose of this chapter is to show that there exists an optimal evaluation
time vector (in a precise sense that we will define) and that it can be approxi-
mated or computed efficiently.

7.1 Preview of the Approach

Our goal is to find an evaluation time vector ep which miminizes the sizes of the
solution boxes in a global Hermite filter. However, this is a difficult problem in
general. We will thus solve a simpler problem, which consists in choosing an
evaluation time that minimizes the local error of an individual filter, i.e., the size
of the enclosure of ms(tg, ug, tx) produced by the filter, assuming that the point
values ug, ..., ur—1 are given (and, of course, that ms(to, uo, tx) is defined).

55
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Definition 13 (Local Error of a Filter) Let FL be a filter for ODE u' =
f(u). The local error of FL wrt (tg,uo,t), denoted by ejoc(FL,to,ug,t), is de-
fined as

€oc(FL,to,10,t) = w (O{ur € R" | FL(t,u,t)}). (7.4)

Since in a global filter we compute k boxes in one step, the step size is defined
as h = ty — tg. Our analysis is based on the assumption that the step size h
is sufficiently small. When we talk about an optimal evaluation time, the term
optimal is thus to be understood in an asymptotic sense.

In the following, we restrict our attention to Hermite filters which satisfy
a certain hypothesis (Section 7.2). To find an optimal evaluation time, we
first derive the local error (Section 7.3). From the local error, we can then
characterize the optimal evaluation time (Section 7.4). Two of the main results
of this chapter are as follows:

1. For a sufficiently small step size h, the relative distance (t. —ty)/h between
the optimal evaluation time ¢, and the point #; in a Hermite(o) filter
depends only on the relative distances (t;41 — t;)/h (1 = 0,...,k — 1)
between the interpolation points tg,...,tr and on ¢. In particular, it does
not depend on the ODE itself;

2. From a practical standpoint, the computation of the optimal evaluation
time induces a negligible overhead of the method. In particular, if we
assume t;41 —t; = h/k (i € N), the relative distance between the optimal
evaluation time and ¢ can be precomputed once for all for given k and o.

The third main result is concerned with the order of a Hermite((ay,...,0%))

filter which is shown to be O(h?s*1) where o5 = Zf:o o; when the evaluation
point is chosen carefully.

7.2 Assumptions and Notations

The following assumptions are used in this chapter. We assume that the inte-
gration times are increasing, i.e. tg < ... < t}, and that t — t;, = O(h). We also
assume that the function f satisfies a Lipschitz condition on 2 C R":

de € RVu,v € Q: ||f(u) — f(v)]| < ¢llu—v]|. (7.5)

Note that (7.5) holds if we assume f € C'(2). We further assume that the
interval extension F' of function f satisfies (D C )

w(F(D)) = O(w(D)). (7.6)

For instance, (7.6) holds if F' is the natural interval extension of f (see Section
2.3) and (7.5) holds. We also assume that B is a bounding box of v’ = f(u)
over T' = O{to, ..., tk,t} wrt (to,ug) and that (see [Ned99])

w((B)j) = OW(B)) =0O(h), jeN (7.7)



7.2. ASSUMPTIONS AND NOTATIONS 57

From (7.5), the condition (7.7) holds if (B); is a sufficiently tight enclosure
of the set {(z); | z € B} (this can be obtained by using the natural interval
extension of the recursive relation (2.63) in Section 2.7). In addition, we assume
that the multistep solution ms is defined at (to,ug) or, in other words, that the
ODE has a solution going through ug, ..., ur—1 at times tg,...,tx—1. We also
use the notations o = (og,...,0%), 05 = Zf:o o, and w(t) = Hf:o (t —t;)%.

Since we are interested in computing an enclosure of ms(to, ug, tx) from the
point values ug, - .., ux—1, we will consider a Hermite filter FL satisfying

Op

FL(ta (UOaU)at) = E

(ta (UOaU)at)+DE(t)_F(p(ta (UOaU)at)+E(t)) =0 (78)

where

e F'is an interval extension of f;

Let us introduce the function

dp

6(t5 (UO,U),t) = E

(t, (0, v),t) = f(p(t, (uo,v),t) + me(t))  (7.9)

where m.(t) = m(E(t)). From the hypothesis (7.6), the condition (7.8) can be
rewritten as

FL(t, (uo,v),t) = 4(t, (uo,v),t) = —DE(t) + O(w(E(?)))- (7.10)

In the case (7.6), the condition (7.10) is satisfied for natural Hermite filters (see
Section 5.1), provided that the interval extensions MS and DMS of ms and agf
yield point values when evaluated at point arguments (recall that we assume
exact interval arithmetic for the theoretical parts of this work). If we assume
that the interval extension of the Jacobian of f satisifies the same condition as
F,ie. w(J(D)o) = O(w(D)), then (7.10) is satisfied for implicit mean-value
Hermite filters, and well approximated for explicit mean-value Hermite filters if
the matrix inversion is accurate (see Section 5.2).

Let us denote the Jacobian of § wrt variable v as follows:

®(t,v) = J,0(t,(uo,v),t)
= jva_f t, (llo,?)),t) - jf(p(t'a (u0>U)7t) + me(t))jvp(t’ (ll(),’l}(),t). )
7.11
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Finally, we introduce the following functions:
g, k J g, —Ulk i k_ Oy .
O = ((Z707 Bin S ) + (S5 452 ) Th20 72 ) (o)
ﬂ():].,ﬂj_—ﬂ(‘j)(tkz, J_la"'aak ]-7
n() =TI (4% )

NOED SN
(7.12)

7.3 Local Error of a Hermite Filter

To characterize the local error of a Hermite filter, we first need a technical
lemma which characterizes the behavior of the derivatives of the filter.

Lemma 1 We have

1. ®(t,v) = IX(t) + O(1);

2
3. At) =O(h 1Y) for tp—1 <t <tg.

This lemma, shows that ®(¢,v) is a @(h~!) asymptotically diagonal matrix for
tr_1 < t < t. Its proof is given in Appendix C. We are now in position to
characterize the local error of a Hermite filter.

Theorem 4 (Local Error of a Hermite Filter) Let FL be a Hermite(c ) fil-
ter for u' = f(u) satisfying (7.10). We have

1. e10c(FL, to, u0, 1) = [(IX(t) + O(1)) O (w(B)) (Jw' (1) + [w(B)]);
2. eoc(FL, to, 19, 1) = Q(h?) (Jw' (t)] + |w(?)]);
9. Ity 1 <t < ty, then eroe(FL, to, u0,1) = O(h?) (ju' ()] + [w(t)])-
Proof Consider two arbitrary vectors v1,v2 € R™ such that
FL(t, (ug,v1),t) & FL(t,(ug,v2),t). (7.13)
By the Mean-Value theorem, we can write
4(t, (ug,v2),t) — &(t, (ug, v1),t) = ®(t,v)(v2 —v1) (7.14)

where v is on the straight line between v; and ve. When the matrix ®(¢,v) is
regular, we can write by Lemma 1 and (7.10)

vp—v = & ( )( ( ,(110,’1}2) )_6(t (uﬂavl)at)

)
= (IM®) +O()~  (DE(H) - DE@) + Ow(E@)). )
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Since the two vectors vy and vy are chosen arbitrarily, it follows from (7.7) that

eloc(FL, to,u0,t) = [(IA(t) + O(1)) 7| (w(DE(t)) + O(w(E(t)))) (7.16)
= |(IX(#) +0(1)) " He(w(B)) (lw' ()| + [w(t)]) '

which proves Point 1. Points 2 and 3 are now direct consequences of Lemma, 1

and (7.7). O

We are now ready to show how to find an optimal evaluation time for Hermite
filters.

7.4 Optimal Evaluation Time for a Hermite Fil-
ter

Our first result is fundamental and characterizes the order of a Hermite filter.
It also hints on how to obtain an optimal evaluation time. Recall that the order
of a method (or of a filter) is the order of the local error minus 1.

Theorem 5 (Order of a Hermite Filter) Let FL be a Hermite(c) filter for
u' = f(u) satisfying (7.10). Then,

1. There exists t such that ty—1 <t <ty and w'(t) =0;
2. Iftp_1 <t <ty and w'(t) =0, then e;oc(FL,to,ug,t) = O(h*2);
3. Ifw'(t) #0, then ejoo(FL, to, ug,t) = Q(ho=F1).

Proof Consider an evaluation time ¢ such that ¢t — ¢, = O(h). We have
w(t) = O(h?¢) and w'(t) = O(h°~1). First assume that ¢, ; < t < t; and
w'(t) = 0. By Rolle’s theorem, since w(t_1) = w(ty) = 0, there exists such an
evaluation time t. By Theorem 4, e;,.(FL,tg,ug,t) = O(h°+1?). Now assume
that w'(t) # 0. By Theorem 4, ejo.(FL, to,ug,t) = Q(host1). O

Observe that the above theorem indicates that a better order for Hermite filters
is obtained when we choose an evaluation time ¢ that is a root of the polynomial
w'. This is the basis of our next result which describes a necessary condition
for optimality.

Theorem 6 (Necessary Condition for Optimal Hermite Filters) Let
FL be a Hermite(o) filter for u' = f(u) satisfying (7.10) and let t. € R be such
that

6lOC(FL, to,llo,te) = . tmig(h){eloc(FL, to,llo,t)} (717)
—tp=

for h sufficiently small. Then, t. is a zero of the function .
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Proof Assume that ¢t — ¢, = O(h) and that h is sufficiently small. By Theorem
5, w'(t.) must be zero to minimize the local error. Note that FL(t, (ug,v),t;)
holds for any v € R™ if w'(t;) = 0 (0 <4 < k). Thus ¢ ¢ {to,...,tx} and
w(te) # 0. Since w'(t) = w(t)y(t), we conclude that vy(t.) = 0. m|

Our next result specifies the number of zeros of the function v as well as their
locations.

Proposition 6 The function v in Theorem 6 has exactly k zeros sg, . ..,Sk—1
such that t; < s; < tir1 (0 <1 < k).

Proof We have w'(t) = w(t)y(t). By Rolle’s theorem, as w(t;) = w(tit1) =0,
w' has a root s; with ¢; < s; < t;4+1 and w(s;) # 0 (0 < ¢ < k). Furthermore,

the roots of w' are in {sq, ..., Sk—1, %o, - -, tr } because t; is a root of multiplicity
0;—1(0<4i<k)and w' is of degree o, — 1, ie., k+ Zf:o(ai —1)=o0s— 1
Since + is not defined at to, ..., %, its zeros are in {sg,...,Sk_1}- |

We are now ready to characterize precisely the optimal evaluation time for a
Hermite filter.

Theorem 7 (Optimal Evaluation Time) Let FL be a Hermite(o) filter for
u' = f(u) satisfying (7.10), let so < ... < sp—1 be the zeros of v, and let t, € R
such that

eloc(FL, tg,ug,t.) = , tmig(h){eloc(FL, to, o, )} (7.18)
e

Then, for h sufficiently small,
[(w/A)(te)l = min }{|(W/)\)(8)|}- (7.19)

te{so,...,sk_l
Proof Let us assume that h is sufficiently small. From Theorem 6, we know that
te € {s0,.-.,8k—1}. By definition, for i =0,...,k — 1, w'(s;) = w(s;)y(s;) =0
and, from Theorem 4,

€toc(FL, to, 10, 5:) = |(IX(s:) + O(1)) 7! |©(w(B))|w(si)]- (7.20)

From Proposition 6, if t = s; (i = 0,...,k — 1), B is a bounding box over
T = O{to,...,tk,8:} = [to,tx] wrt (to,ug) and the factor ©(w(B)) does not
depend on t = s;. We have thus to minimize the function

plt) = [(IA(E) + O() " [[w(®) (7.21)

for t € {so,...,8k-1}. By Lemma 1, A(sx_1) = ©(h~1). Therefore, we must
have A(t.) = ©(h™') and p(te) ~ |(w/A)(t.)|. Let us now assume that there
exists ¢ € 0..k — 1 such that |(w/A)(s;)| < [(w/N)(te)|- We can write

(/N (s3] <[(w/N)(te)] = A(si) =O(h™")
= p(si) & |(w/A)(s4)] (7.22)
= p(si) <plte)

which is a contradiction. O
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k 1 2 3 4 5 6

(te —tg)/h | —0.5000 | —0.2113 | —0.1273 | —0.0889 | —0.0673 | —0.0537

Table 7.1: Relative Distance between the Rightmost Zero t. of v and t; when
ggp = ... =0k-

7.5 Discussion

It is important to discuss the consequences of Theorem 6 in some detail. First
observe that the relative distance (t, — ti)/h between the optimal evaluation
time t, and the point t; depends only on the relative distances (t;11 —1t;)/h (i =
0,...,k — 1) between the interpolation points tg,...,t; and on the vector o.
In particular, it is independent from the ODE itself. For instance, for k¥ = 1,

we have y(t) = ;%- + ;% and v has a single zero given by ¢, = Zietcols,
In addition, if o9 = ... = oy, then the zeros of y are independent from o. In

particular, for k = 1, we have t. = (o +¢1)/2. From a practical standpoint, the
computation of the optimal evaluation time induces a negligible overhead of the
method. In particular, if we assume t;11 — t; = h/k (i € N), then the relative
distance between t; and the optimal evaluation time can be precomputed and
stored for a variety of values of k and o. Finally, it is worth stressing that any
zero of function v gives an O(h?:*!) order for the Hermite filter provided that
A(t) = ©(h™1) at that zero. Hence any such zero is in fact a potential candidate
for the optimal evaluation time. In our experiments (see the next section), the
right-most zero was always the optimal evaluation time when o9 = ... = oy,
although we have not been able to prove this result.

7.6 Illustration

We now illustrate the theoretical results presented in this chapter. Table 7.1
gives approximative values of the relative distance (t. —tx)/h between the right-
most zero t. of the function v and the point t; (1 < k < 6), for g = ... = 0%,
and t;41—t; = h/k (i =0,...,k—1). Observe that, for two interpolation points,
te is in the middle of ¢y and ;. It then moves closer and closer to t; for larger
values of k.

Figures 7.1, 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7 illustrate the functions v, w, w',
A and w/\, and their sometimes complex interactions, for several values of k
and o. In each case, the top-left figure shows the function w' and ~, as well as
the zeros of «. The top-right figure shows the function w with the zeros of v in
superposition. The bottom-left figure shows function A with the zeros of v in
superposition. The bottom-right picture shows the function w/A and the zeros
of v. It can be seen that the right-most zero minimizes the local error in each
reported case.






