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Chapter 1

Introduction

This work has been initiated in September 2006 during the last year of my
master in the Département d’ingénierie informatique at the University of
Louvain-La-Neuve. The conclusions of the first part of this work have been
submitted and presented at the conference Journées Françaises de la Pro-
grammation par Contraintes (JFPC - Paris) in June 2007.

This work has been done in the field of Constraint Programming, a pro-
gramming paradigm that allows users to specify and solve efficiently a large
number of real-world combinatorial problems. The objective of this work was
to design a global constraint and implement it in an efficient CP engine.

The Set Covering Problem (SCP) has been chosen as an interesting prob-
lem to solve, for which it does not exist any global constraint in the CP
community yet. This problem is very attractive for CP in three main points.
Firstly, the Set Covering Problem is a generalization of many important
problems in combinatorial optimization: vehicle routing , crew assignment
and bin packing problems. Optimal electronic circuit’ s tests design can also
be formulated as a Set Covering Problem. Secondly, many useful problems
arising in graph theory can be formulated as SCP’s, such as the indepen-
dent set, the vertex cover and the dominating set problems. Thirdly, in
Constraint Programming, the constraint NValue that counts the number of
values used by the assignment of a vector of variables is a specialization of
the Set Covering Problem.

Thus a global constraint for SCP can be very useful from a user point of
view to model and to solve efficiently many real-world problems.

This work has the five following technical contents. Firstly we analyse
the structure of the SCP to design a generic SC constraint that needs a

1



lower bound on the cost of a set cover to do pruning. Secondly, we analyse
such lower bounds that we found in the literature and that can be used
into our generic constraint. Thirdly we introduce a lower bound that can
be computed by relaxing the initial SCP into an edge covering problem.
Fourthly we present an efficient algorithm to compute incrementally this
edge covering problem based on the Hungarian method. Finally we extend
our constraint to handle problems for which the collection of subsets is too
big to be enumerated explicitly. Such problems cannot be tackled with the
first approach.

The set covering problem has been extensively addressed over more than
forty years. The objective of this work is not to give a final solution to this
problem, but to present an initial insight in some possible ways of solving
set covering problems with CP. This work has been lead in a research way
of thinking; aiming at being creative, able to efficiently materialize our ideas
and sharing them to other researchers.

There are two main conclusions of this work. First the set covering prob-
lem is a very difficult problem for CP, whose aim is to use the intrinsic
structure of problems to reduce the search path of solutions, because SCP
has not much structure. This should be kept in mind when considering set
covering problems in constraint programming. Second, CP users should re-
member from this work that using a SC constraint to tackle specializations
of SCP is not efficient if the size of the problems is too large. Because the SC
constraint is only aware of the covering structure of a problem, developing
more specialized propagators that take the additional structure into account
would be worth the additional implementation cost.

This report is divided into four main parts. The first part gives a back-
ground on contraint programming and optimization theory. The objective of
the two first chapters is not to give an exhaustive view of these broad fields,
but it aims at giving an intuitive but formal view to the reader who is not
used to one of these domains. It also allows to emphasize which parts of this
work is more innovative. The second part analyses the set covering problem
in more depth and identifies the generic SC constraint. The third part of this
report describes our main contributions: the 2SC relaxation, the algorithm
to solve it and the extension of the SC constraint to handle very large SCP.
The last part contains the experimental sections with an explanation of the
non-trivial points of our implementation and quantitative results to assess
the added value of the work presented in this report.
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Part I

Background
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Chapter 2

Constraint Programming

2.1 Main Ideas

is a programming paradigm in which programs contains variables whose re-
lations are expressed by (possibly high-order) constraints on their domains.
A solution to such a program would be an assignment of all variables such
that all constraints of the program hold. Constraint Programming differs
from most well-known programming paradigms by the fact that it specifies
properties about variables instead of specifying how compute solutions.

With such a programming paradigm at hand, the user can extend his
programs easily as it suffices to add or remove constraints between variables
to modify it.

The above concepts should be understood in their most generic meaning.
Variables could represents integer, sets, graphs, topologies,. . . Constraints
could also be any kind of imaginable properties between variables.

Historically, constraints were first introduced into [JL87] to create the
paradigm (CLP). In Logic Programming, variables can be in two states:
bound ( assigned to a value) or not bound. CLP allows variables to be con-
strained rather than bound, constraints are active and could remove several
values from the domain of a variable as soon as it detects that these values
cannot be part of any solution of the problem. This allows to prune the
search space and to decrease the time needed to find one or all solutions. A
propagator is a piece of code that makes a constraint active by implement-
ing a filtering algorithm. Propagators are executed when domains of the
variables have changed, and they try to prune the new domain.
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The following sections formalize all these concepts.

2.2 Constraint Satisfaction Problem

Problems that aim at finding solutions respecting a set of constraints are
called (CSP).

A CSP is defined over a set of variables X = {X1, . . . , Xk}. Let U be
the set of all possible values. Each variable Xi ∈ X has a set Di of possible
values that is called domain of Xi. We define a as the cross product of all
these domains: D =

∏k

i=1 Di, (Di ∈ 2U). In the following we shall denote the
domain of variable Xi by D(Xi) = πi(D) = Di.

An is a function Λ : X → U assigning a single value to each variable of
the CSP. A constraint c is a set of valid assignments: c ⊆ D. Thus Λ is a
valid assignment respecting constraint c iff

(Λ(X1), . . . , Λ(Xk)) ∈ c ∧ Λ(Xi) ∈ Di, foralli : 1 ≤ i ≤ k

In the following we shall write Λ ∈ c to state that.

Formally a CSP is a pair (C,D), where C is a set of constraints and D is
a store. A solution to this CSP is an assignment Λ respecting all constraints;
∀c ∈ C, Λ ∈ c. The set of solutions of a CSP is denoted by S≀l(C, ∆). Two
CSP’s (C,D) and (C′,D′) are equivalent if S≀l(C,D) = S≀l(C′,D′). A CSP
(C,D) is failed if S≀l(C,D) = ∅.

A linear program is an example of CSP. In this case, domains are subsets
of R, the set of reals. Constraints are linear inequalities that variables should
respect.

2.3 Constraint Programming

Constraint Programming aims at offering a nice framework to the user that
allows him to solve efficiently CSP’s while requiring small development time.

A user should be able to formulate his CSP in a declarative way; by listing
all variables, their domains and by specifying all constraints. This is the first
of the two levels of the CP programs architecture.

The second is the search component, where the user specify how the CP
solver should explore the solutions. We can summarize the architecture of

- 5 -



CP programs by the equation

CP programs = constraints model + search

In order to solve a CSP, CP engines alternate propagation steps with
branching steps: when all propagators are idle, a variable is fixed and the
propagation can continue. When it is idle, it branches, etc. These steps are
detailed below.

2.3.1 Propagation

In order to solve CSP’s efficiently, Constraint Programming try to reduce the
size of the domains by mean of propagation. Propagation aims at finding an
equivalent CSP to the current one with smaller domains. It uses constraints
from the CSP to detect invalid assignments and remove values from domains
accordingly.

In order to reduce to size of the domain, constraints are coupled with
propagators that implement filtering algorithms. This allow to consider con-
straints locally and remove a few values from domains as soon as the filtering
algorithm detects they do not belong to any solution.

Example 2.1 (Propagation) Imagine we should solve the following CSP

Variables X, Y with D(X) = {1, 2, 3, 4, 5} and D(Y ) = {2, 3, 4, 5, 6}

Constraints X ≥ Y + 2

A propagator implementing constraint X ≥ Y + 2 could remove values
1, 2 and 3 from the domain of X, because Y ≥ 2 ⇒ X ≥ Y + 2 ≥ 4. By
the same reasoning, the propagator could remove values 4, 5 and 6 from the
domain of Y .

An equivalent CSP to the former one is thus

Variables X, Y with D(X) = {4, 5} and D(Y ) = {2, 3}

Constraints X ≥ Y + 2

It should be noted that when there are more than one constraint, each
propagator looks for changes in variables domains. When there is a change
it applies the filtering algorithms to possibly remove some values from some
domains. Thus propagators communicate by mean of changes in variable
domains.
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Filtering Algorithms

Filtering algorithms implemented by propagators can be regarded as function
transforming a CSP into an equivalent CSP with smaller domains. A filtering
function fc : 2U → 2U for the constraint c must be

Contractant fc(D1) ⊆ D1

Monotone D1 ⊆ D2 ⇒ fc(D1) ⊆ fc(D2)

Correct D1 ∩ c ⊆ D1

A filtering function fc is entailed if ∀D′ ⊆ D, fc(D′) = fc(D). Filtering
algorithms usually low time complexity as they often must be executed.

2.3.2 Search

Because the type of problems tackled by CP are generally hard problem,
being NP-Hard in most cases, propagation in itself is not sufficient to solve
them.

The framework of CP integrates then the possibility to explore the set
of all assignments by mean of search heuristics. When all propagators have
reached a fixed point (any of them cannot remove any value from any do-
main), we should fix a variable in order to go on.

Search is specified by a search tree and a traversal algorithm. The root
node of the search tree represent the original CSP. Then descendents of a
given node are obtained by splitting the CSP, i.e. by reducing the size of the
domains. Often only one variable domain is splitted.

The traversal strategy usually used is DFS, because the space complexity
of this algorithm is linear in the number of variables. Thus CP engines also
provides support for backtracking. When propagation leads to a failed CSP
(by removing values in domain), we should get to an ancestor of the current
node and continue to explore the search tree.

A generic search algortihm is sketched in Algorithm 2.1

In the case DFS is used, Trail can be implemented by a queue (First In
First Out) and choose would select the last added entry in Trail. propagate(C,D)
is provided by the CP engines; it calls all propagators until no one of them
makes any more pruning to the doamins of the variables. For the search part,
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SearchAll((C,D))

PRE: - (C,D) is a CSP
POST: - Solutions = S≀l(C,D)

1: Trail = {(C,D)}
2: Solutions = ∅
3: while Trail 6= ∅ do
4: (C′,D′) = choose(Trail)
5: propagate(C′,D′)
6: if ∄Xi ∈ X : |D′(Xi)| = 0 then
7: if ∀Xi ∈ X , |D′(Xi)| = 1 then
8: Solutions := Solutions ∪ {D′}
9: else

10: Trail := Trail ∪ branch(C′,D′)
11: end if
12: end if
13: end while

Algorithm 2.1: Generic Search Algorithm

the user has only to provide the branch function in most cases. The branch
function should return a set of CSP’s whose domains of the store are subsets
of the domains in the sotre of the current CSP.

2.4 Existing CP Engines and Libraries

The first variant of Constraint Logic Programming was developped in Prolog
II [JL87]. They added support for disequations. The first real implementa-
tions of CLP were PrologIII, CLP(R) [JMSY92] and CHIP [P.91].

Nowadays a dozen fo different implementations of CP engines and li-
braries exist. Among others we can cite Ilog Solver that is a proprietary
C++ library that provide an API to add support of CP in imperative pro-
grams. Gecode [gec] also provides such library while being open-source. The
implementation Mozart of the language Oz [Smo98] provides a multiparadigm
framework in which Constraint Programming is supported.

- 8 -



Chapter 3

Optimisation Theory

This section gives some background about optimization theory. This theory
contains interesting theoretical results about optimization problems and their
solutions that will be used through this work. It is a strong background
for operations research. In this work we only focus on linear optimization
problems.

The objective of this chapter is not to give an exhaustive overview of this
field. It only aims at presenting results that are useful in this work.

3.1 Formulation of linear optimisation prob-

lems

This section presents how one formulate optimization problem in OR. De-
cision variables are denoted by x1, . . . , xn. The objective is to minimize a
weighted sum of all these decision variables: min

∑n

j=1 cjxj. All the con-
straints are linear inequalities wrt the decision variables, i.e. of the form
∑n

j=1 aijxj ≥ bi. More conveniently, problems are often formulated as the
following

min ctx subject to (3.1)

Ax ≥ b (3.2)

x ≥ 0 (3.3)

where c, x ∈ Qn, b ∈ Qm and A ∈ Qm×n. n is the number of decision
variables (x1, . . . , xn). m is the number of constraints.
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The set of solutions of an optimization problem is P = {x ∈ Qn | Ax ≥
b, x ≥ 0}. The cost of a solution x is given by cx =

∑n

j=1 cjxj . The optimal
solution will usually be denoted x∗.

All the following results use this specific formulation.

3.2 Polyhedral results

Definition 1 A is the region defined on one side of a hyperplan.

Definition 2 A polyhedral is the intersection of some half-spaces.

Because each constraint of a linear optimization problem defines a half-
space, then the set of all solutions P = {x ∈ Qn | Ax ≥ b, x ≥ 0} is a
polyhedral.

Definition 3 An extreme point of a polyhedral P is a point x ∈ P such
that there do not exist two points y, z ∈ P different from x and a scalar
λ : 0 ≤ λ ≤ 1 such that x = λy + (1− λ)z.

All these geometrical concepts are illustrated in Fig.3.1.

Figure 3.1: A polyhedral being defined by the intersection of five half-space.
Extreme points are represented by circles.

Theorem 1 (Fundamental theorem) If an optimization problem P
has a finite optimal cost, and if the polyhedral P of all solutions of P
has at least one extreme point, then there exists an extreme point of P
that is an optimal solution of P .

This tells us that it suffices to consider all the extreme points of the
polyhedral P to find an optimal solution, if any exists.

- 10 -



3.3 The Simplex Algorithm

The simplex algorithm aims at finding an optimal solution to an optimization
problem. It walks through adjacent extreme points until there is no better
adjacent extreme points.

Although it has an exponential theoretical complexity, the simplex algo-
rithm is highly efficient in practice. Moreover this algorithm is well suited to
optimize problems incrementally, i.e. reoptimizing them after a few changes
in the problem formulation.

3.4 Duality theory

3.4.1 The dual problem

Record that all optimization problems can be expressed under the form

min ctx subject to (P )

Ax = b

x ≥ 0

This is usually called the primal problem. To each optimization problem
we associate another problem, called the dual problem

max bty subject to (D)

Aty ≤ c

y ≥ 0

These two problems share a lot of interesting properties.

3.4.2 Main results

Proposition 2 (Weak duality) If x is a solution of (P ) and y a so-
lution of (D), then

ctx ≥ bty

- 11 -



This tells us that if we find a solution of the dual, then we have a lower
bound on any solution of the primal (and on the optimal value of (P ) in
particular).

Proposition 3 (Strong duality) If one of (P ) or (D) has an finite
optimal solution, then also does the other problem.
If x∗ (resp. y∗) is an optimal solution of (P ) (resp. (D)), then

ctx∗ = bty∗

3.4.3 The Karüsch-Kuhn-Tucker conditions

The Karüsch-Kuhn-Tucker conditions are powerful results about optimal so-
lutions of (P ) and (D). They were initially introduced in [Kar39, KT50].
Note that we only present the KKT conditions for the linear case. These
conditions also exist for more complex optimization problems (quadratic,. . . ).

If we must solve the following problem

min
n

∑

j=1

cjxj subject to (3.4)

n
∑

j=1

gijxj ≥ bi ∀i ∈ I (3.5)

n
∑

j=1

gijxj = bi ∀i ∈ E (3.6)

The KKT conditions state that a solution x∗ to the previous problem is
optimal if and only if there exists λ∗ such that

cj −
m

∑

i=1

gijλ
∗
i = 0 ∀j : 0 ≤ j ≤ n (3.7)

n
∑

j=1

gijxj ≥ bi ∀i ∈ I (3.8)

n
∑

j=1

gijxj = bi ∀i ∈ E (3.9)
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λ∗
i ≥ 0 ∀i ∈ I (3.10)

λ∗
i (

n
∑

j=1

gijxj) = 0 ∀i ∈ I (3.11)

It can be proven that λ∗ is an optimal solution of the dual (3.4)-(3.6).

3.5 Integer programming

Integer programming deals about solving optimization problems for which
decision variables must take integer value. The formulation of IP is the
following

min ctx subject to (3.12)

Ax ≥ b (3.13)

x ≥ 0 (3.14)

xi is integral ∀i ∈ I (3.15)

3.5.1 Challenges

The introduction of integer variables into problems leads to an increasing
complexity. Although optimization problems without integrality constraints
can be solved in polynomial time by interior points methods, most of the
interesting problems with integrality constraints are NP-Hard to solve to
optimally.

Integer programming aims at using tools from the continuous optimiza-
tion theory to efficiently solve integer problems.

The main difficulty is that integrality constraints modify the polyhedral
of feasible solutions in such a way that it is very difficult to compute it. The
following definition is useful.

Definition 4 (Convex Hull) The Convex Hull of a set of points X
in Rn is the smallest convex set C ⊆ Rn containing X , i.e. the smallest
convex set C such that X ⊆ C.

It is straightforward that all extreme points of the Convex Hull will be
integral points. Thus from Theorem 1, if we can compute the Convex Hull
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of the set of solutions of an IP, then we can use a LP solver to find an
optimal integral solution to the IP. However computing this Convex Hull can
be NP-Hard. Fig.3.2 illustrates the convex hull of a subset of Rn.

Figure 3.2: IP polyhedral. The bright shaded polyhedral is the polyhedral
of the linear relaxation of the IP. The dark shaded polyhedral is the convex
hull, i.e. the smallest polyhedral containing all integral solutions of the IP
and whose extreme points are integral

3.5.2 Problems for which LP ≡ IP

For some problems, the integrality constraints does not lead to any increasing
complexity. For these problems, it can be shown that relaxing the integrality
constraint (3.15) does not change the polyhedral of solutions, i.e. the poly-
hedral of the solution of the linear relaxation is the same as the Convex Hull.
Solving the linear relaxation with LP solvers provide an integral solution.

There exists a necessary and sufficient condition for an IP to be solvable
via the linear relaxation.

Definition 5 (Totally Unimodular Matrix) A matrix M is said to
be totally unimodular (TU) if the determinant of all submatrices of M
is equal to 0, 1 or −1.

Theorem 4 The convex hull of the IP (3.12)-(3.15) is exactly the poly-
hedral PLP of all solutions of the linear relaxation of IP if and only if
A is TU.

Several facts about TU matrices are very important and will be helpful
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in the following.

Theorem 5 A m× n matrix A is TU if

1. aij ∈ {0, 1,−1} ∀i, j : 1 ≤ i ≤ m, 1 ≤ j ≤ n

2. There are at most two non-zero entries in each row:

m
∑

i=1

|aij| ≤ 2, ∀j = 1, . . . , n

3. There exists a partition (M1, M2) of the m rows such that for any
columns with two non-seros in rows i and j, there is one row in
M1 and one row in M2.

∣

∣

∣

∣

∣

∑

i∈M1

|aij| −
∑

i∈M2

|aij|

∣

∣

∣

∣

∣

≤ 1 ∀i : 1 ≤ i ≤ n

3.5.3 Branch and bound

One of the most intuitive method to solve an IP would be to completely
enumerate all possible assignments and to check whether they respect all
constraints and then to take the assignment having the smallest objective
value. However the number of such assignments is exponential (in the number
of variables), making this enumeration infeasible in practice.

A solution not to fully enumerate the set of all asignments is to use bounds
provided by the linear relaxation LPIP of the IP . If we denote by PLP the
set of solutions of the linear relaxation and by X the set of all solutions of
the IP, then we have X ⊆ PLP . If we denote the optimal fractional solution
of LPIP by x∗

LP , its objective value by z∗LP and the optimal objective value
of IP by z∗ then

1. If x∗
LP is integral, i.e. x∗

LP ∈ X , then x∗
LP is the optimal solution of IP

2. zLP ≤ z∗

3. If LPIP is infeasible, i.e. PLP = ∅, then X = ∅ and IP is also infeasible.
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(?, ?, ?)

(0, ?, ?)

x1 = 0

(0, 0, ?)x2 = 0

(0, 0, 0)x3 = 0

(0, 0, 1)x3 = 1

(0, 1, ?)x2 = 1

(0, 1, 0)x3 = 0

(0, 1, 1)x3 = 1

(1, ?, ?)

x1 = 1

(1, 0, ?)x2 = 0

(1, 0, 0)x3 = 0

(1, 0, 1)x3 = 1

(1, 1, ?)x2 = 1

(1, 1, 0)x3 = 0

(1, 1, 1)x3 = 1

Figure 3.3: Full enumeration tree of a 0-1 IP with three variables. No pruning
is done. At each arc, we fix a variable, until all variables are fixed. If the
assignment respect all constraints, the current node represents a solution to
the IP

This leads to consider solving IP by exploring a binary enumeration tree,
solving the linear relaxation at each node and pruning branches of this tree
accordingly to x∗

LP , z∗LP . If we have a IP solution xIP with cost z, then

Pruning by optimality If the solution x∗
LP at the current node is integral,

then we can prune the current branch as we know there are no strictly
better solution down in the current branch.

Pruning by bound If the optimal linear cost z∗LP in the current node is
such that z∗LP ≥ z then we can prune the current branch as we know
we cannot find a strictly better solution than xIP in the current branch.

Pruning by Infeasability If the linear relaxation of the current node is
infeasible, then we can prune the current branch as we know there is
no (integral) solution.
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26,5

24,5

x1 = 0

22
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∞

x2 = 1

29
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Figure 3.4: Branch-and-Bound: the three types of pruning are illustrated.
Rectangular nodes represents nodes whose linear relaxation gives an integral
optimal solution. Triangle nodes are pruned because the linear relaxation has
no feasible solution. Diamond nodes are pruned because the linear relaxation
gives lower bound greater than the best integral solution found so far. We
made the hypothesis the search tree was explored by DFS.

3.6 Lagrangean relaxation

Lagrangean Relaxation aims at solving IP problems by removing difficult
constraints. Imagine we need to solve the following problem

z = min cx (IP ) (3.16)

Ax ≥ b (3.17)

Dx ≥ d (3.18)

x ∈ Zn
+ (3.19)

and that this problems without constraints (3.18) is easy to solve (for
instance by a polynomial-time algorithm). One way to find a lower bound
on the optimal value z is just to forget constraints (3.18) and to solve this
easier relaxation. However this lower bound may be weak because a lot
of constraints are not considered. Lagrangean Relaxation aims at handling
these complicating constraints (3.18) in the objective function. Define the
following problem:

z(λ) = min cx + λ(d−Dx) (IP (λ)) (3.20)
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Ax ≥ b (3.21)

x ∈ Zn
+ (3.22)

.

It can be proven that IP (λ) is a relaxation of IP ; we have XIP ⊆
XIP (λ)andz ≥ z(λ) [Wol98, Proposition 10.1]. The vector λ can be viewed as
a penalty term for constraints (3.18) that are not respected. The quality of
the lower bound obtained by solving IP (λ) depends strongly on the vector λ.
Thus what we want is to solve the following problem called the Lagrangian
Dual

wLD = max
λ∈R

n
+

z(λ) (LD) (3.23)

The structure of the Lagrangian Dual is problem depended. If we define
the feasible region of problem (3.16)-(3.19) by X = {x ∈ Zn

+ | Ax ≥ b}, then
it can be shown that [Wol98, Theorem 10.3]

Theorem 6 (Strength of the Lagrangean Dual)

wLD = min{cx | Dx ≥ d, x ∈ conv(X)}

This implies that if conv(X) = {x ∈ Rn | Ax ≥ b} then the Lagrangean
Dual is not stronger than the LP relaxation.

The remaining problem is to find the Lagrangean multipliers λ that max-
imises z(λ). It is shown in many references (see [Wol98] for instance) that
the Lagrangean Dual is equivalent to maximize a piecewise linear function.

A well-known technique to solve such problems is the subgradient algo-
rithm. We denote by x∗(λk) the optimal solution of IP (λk) of weight z(λk)

∗

and by Dx = d the matrix representation of dualized constraints (3.18). The
subgradient algorithm is presented in Algorithm 3.1.

One of the most used definition of mk is the following

µk = ek

z(λk)− w

||d−Dy(λk)||2
(3.24)

with 0 < ek ≤ 2 and w is an lower bound of z(λk). Sometimes we don’t
have such a lower bound, then we compute a good upper bound by mean a
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SubGradient()
1: λ← λ1, k = 1
2: repeat
3: Solve IP (λk) with optimal solution x∗(λk)
4: λk+1 ← λk − µk(d−Dy(λk))
5: k ← k + 1
6: until |x∗(λk−1)− x∗(λk)| > e
7: return x∗(λk)

Algorithm 3.1: Subgradient algorithm

heuristic on the non-relaxed problem IP. Properties and justification of this
formula can be found in [HWC74].

To summarize, in order to compute a Lagrangean lower bound of our
original IP problem, we use the subgradient algorithm to slightly modify the
weights in the objective function and we use a specialized algorithm to solve
the new IP (λ) problem. We loop between these two steps until the z(λk)
does not increase enough.

3.7 Column generation

Column Generation is used when the problem to solve is too large to be
feeded into a solver at once. In the previous section we presented the La-
grangean relaxation principle that allows to decrease the number of rows in
an optimization problem. Column Generation aims at doing the same thing
with columns.

Column generation is also used when the structure of the constraints are
too complex to achieve efficient formulation. In this case it can be better to
express the solutions of the problem explicitely. This leads to problem with
a huge number of columns, that cannot be tackled directly by LP solvers.
Then column generation can determine whether we achieved optimality or
not by using pricing procedures.

It begins to solve the initial problem restricted to a subset of the columns.
Then it computes columns that are good candidates to be part to the optimal
solution. It loops on this process until it can determine that all columns not
generated cannot be part of the optimal solution.

Column generation is also called branch-and-price. This is different from
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branch-and-cut, where we add valid inequalities (thus inserting rows) and
branch whenever we cannot find such inequalities anymore. There exist one
more link between cutting and generating columns; the pricing problem in
column generation is in fact a cutting problem for the dual problem and
vice-versa.

There exist two main important points when designing a branch-and-price
algorithm:

• Branching on variables - as it is usually done - can be inefficient because
it breaks the structure of the pricing problem.

• Solving LP relaxation and subproblem to optimality could be too time-
consuming. Special actions should be taken in order to fix this problem,
depending on the problem.

A very good review on Column Generation can be found in [BJN+98].

3.7.1 Principles

Suppose that we want to solve the following linear problem, called the Master
Problem

(MP ) min
∑

c∈C

cc.xc subject to (3.25)

∑

c∈C

c.xc ≥ b (3.26)

x ≥ 0 (3.27)

where x ∈ Qn, C is a set of columns, i.e. a subset of Qm and cc is the cost
of column c.

Then the dual of (MP ) is

(DMP ) max
m

∑

i=0

bi.πi subject to (3.28)

c̄ =

m
∑

i=0

ciπi ≤ cc ∀c ∈ C (3.29)

π ≥ 0 (3.30)
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The challenge is that the set C is usually too big to be solved at once.
Thus we define a Restricted Master Problem

(RP ) min
∑

c∈C′

cc.xc subject to (3.31)

∑

c∈C′

c.xc ≥ b (3.32)

x ≥ 0 (3.33)

where C′ ⊆ C. Because C′ is smaller than C, (RP ) can be much more
easily solved than (MP ). Observe that any solution x of (RP ) is also a
solution of (MP ).

Now suppose we have an optimal solution for (RP ) and its dual, respec-
tively xr and πr ≥ 0. We define the following

Definition 6 (Reduced cost) The reduced cost associated to a col-
umn c wrt dual values π is

c̄ = cc−
m

∑

i=0

ciπi

Then πr is a solution of (DMP ) only if all reduced cost are positive, i.e.
c̄ ≥ 0, ∀c ∈ C. If all reduced costs are positive, then we have a solution xr

of (MP ) and πr of (DMP ) whose costs are equal:
∑

c∈C cc.x
r
c

=
∑m

i=0 bi.π
r
i .

From the Weak duality theorem (2) xr is then optimal for (MP ).

The main idea behind column generation is to select a small subset S of
columns in C, to solve the associated restricted problem. Then it solves the
following Pricing Problem

(PP ) ζ = min cc−
m

∑

i=0

ciπ
r
i subject to (3.34)

c ∈ C (3.35)

Then if ζ ≥ 0, then it means that xr is optimal and we can stop. Oth-
erwise the algorithm adds the optimal column c

∗ of (PP ) to (RP ), solves
(RP ) and so on until the optimal solution to (MP ) is found.
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Part II

The problem: The set covering
problem
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Chapter 4

The set covering problem

The set covering problem (SC) can be defined as follows. Let U = {1, . . . , m}
be a set of m elements. Let X be a collection of subsets of U , i.e. X =
{S1, . . . , Sn} where Si ⊆ U , (1 ≤ i ≤ n) and let cj be a weight associated to
each subset Sj , 1 ≤ j ≤ n. SC calls for a subset T of indices of X covering
U ; T ⊆ {1, . . . , n} |

⋃

i∈T Si = U and such that
∑

j∈T cj is minimum. An
example of such a problem is illustrated in Fig.4.1.

SC problems are very difficult. The results in [ALM+98] imply that it does
not have a polynomial time approximation scheme unless P = NP; that is,
there exists a constant ǫ > 0 such that the problem cannot be approximated
in polynomial time with a ratio smaller than 1 + ǫ unless P = NP. More
negative results about the complexity of this problem can be found in [LY94].

The integer programming formulation of SC is

SC∗ = min
x∈Bn

∑

1≤j≤n

cjxj (SC)

U = {1, 2, 3, 4, 5}
S1 = {1, 3, 5}, S2 = {1, 2, 4}, S3 = {5, 2}, S4 = {1, 3, 2}

cj = 1, (1 ≤ j ≤ 4)

Sol = {1, 2}

Figure 4.1: Example of a set covering problem. It is obvious that there is
no subset Si covering U in itself. We observe S1 ∪ S2 covers entirely U , thus
{1, 2} is a set cover of U of minimum cardinality.
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subject to
∑

1≤j≤n

aijxj ≥ 1 ∀i ∈ U (4.1)

xj ∈ B ∀j = 1 . . . , n (4.2)

where aij = 1 iff i ∈ Sj . B = {0, 1}.

A lot of real-life applications can be formulated in terms of a SC prob-
lem: crew assignment and scheduling [SZSF02, HP93, CFT99], construction
of optimal logical circuits [Pie68], location of emergency facilities [JM92,
TSRB71], routing problems (VRP will more deeply considered later). Addi-
tionally, a lot of well-known combinatorial problems can be easily formulated
by mean of the SC problem such as vertex cover, dominating set and inde-
pendent set.

A lot of work has been done to solve this problem either to optimality or
to a nearly optimal solution, usually using integer programming. Two good
reviews are [CFT98, CNS97].
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Chapter 5

A general CP approach to SCP

5.1 The global constraint SC

The aim of this CP approach is to design a global constraint for SC having
the form SC(N, T,U , X = {S1, . . . , Sn}, Cost) where

• U = {1, . . . , m} is a set of elements

• N is an integer

• X is a collection of subsets Si ⊆ U , (1 ≤ i ≤ n)

• T is a subset of the indices of X: T ⊆ {1, . . . , n}

• Cost is a function giving a weight for each subset Si; Cost : X → Z.
For sake of simplicity, we will denote Cost(Si) by ci.

This constraint holds if and only if

U =
⋃

i∈T

Si (5.1)

∑

i∈T

ci = N (5.2)

In the following, N and T will be considered as variables and U , Si(i =
1, . . . , n), Cost will be considered constant. N is a finite-domain (FD) vari-
able and T is a set variable [Ger97, Pug96]. N denotes the upper bound on
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N and N denotes its lower bound: N ≤ N ≤ N . We use the same notations
for T : T ⊆ T ⊆ T . We also define N = N \N and T = T \ T .

We observe that (5.1) is easy to satisfy, while, for small values of N ,
finding a T satisfying (5.2) is hard. This is why we need good lower bounds
on N in order to prune the domains of N and T .

The objective of the filtering algorithm for this global constraint SC is
to prune the domain of N and T by removing values that do not belong to
any solution of this constraint.

5.2 Pruning of N

From the structure of SC, it is easy to see that the tightest upper bound on
N is N ≤

∑

i∈T ci. Indeed if there exists a solution to the constraint (i.e. an
assignment of variables N and T such that (5.1) and (5.2) hold), then taking
all subsets, N =

∑

i∈T ci, T = T , would be a solution to the global constraint

SC too. Hence the pruning rule is N = min(N,
∑

i∈T ci).

However computing a lower bound on N is more difficult. Computing the
tightest lower bound on N requires to solve SC to optimality, i.e. to compute
SC∗. This problem is NP-Hard [Kar72]. In this paper we use a lower bound
of SC∗ to prune the domain of the variables. To compute such a lower bound
one solves a relaxation of SC. Let denote such a relaxation by SCRel and
its optimal value by SCRel∗. Then we have

lbSC = SCRel∗ ≤ SC∗

The pruning rule is N = max(N, lbSC). A generic filtering algorithm for
pruning the domain of N is sketched in Algorithm 5.1.

computelbSC(D)

SCRel = buildSCRel(D(T )) // Build the relaxation SCRel of
SC

SCRel∗ = solve(SCRel) // compute the optimum value
of SCRel

return {(N, [ D(N); SCRel∗[ )}

Algorithm 5.1: Filtering algorithm for the SC constraint
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5.3 Pruning of T

T is a set domain variable. The pruning algorithm should prune the domain
of T according to constraints (5.1) and (5.2). From the first constraint we
can derive the following two pruning rules:

(P1) The constraint SC does not hold if U cannot be covered by the available
subsets, thus ∃e ∈ U , ∀i ∈ T e /∈ Si → fail

(P2) Because the indices in T should cover U , when there is only one subset
Si covering an element e, Si should be part of the cover. So we have
∃e ∈ U , ∃!i : e ∈ Si → i ∈ T

Without constraint (5.2), these pruning rules would achieve optimal prun-
ing (all partial solution could be extended to a feasible solution). In order to
prune constraint (5.2), two other pruning rule should be considered.

(PA) Remove from T the indices of subsets that do not belong to any cover
of weight in [N ; N ]: T ← T \ {i ∈ T \ T | ¬SC(N, T ∪ {i},U , X)}

(PB) Put in T all indices such that Si belongs to all covers of weight in
[N ; N ]: T ← T ∪ {i ∈ T \ T | ¬SC(N, T \ {i},U , X)}

Unfortunately, we saw that achieving arc-consistency for the SC con-
straint is NP-Complete, thus these last two rules can only be approximated.
We will use a lower bound to prune according to constraint (5.2):

(P’A) T ← T \ {i ∈ T \ T | lbSC(N, T ∪ {i},U , X) > N}

(P’B) T ← T ∪ {i ∈ T \ T | lbSC(N, T \ {i},U , X) > N}

Pruning (P’A) (resp. (P’B)) can be done by mean of a shaving technique:
we remove from T (resp. add in T ) each value i ∈ T \T at turn and recompute
a new lower bound lbi on N . If lbi > N , then we must put i in T (resp. remove
i from T ).
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5.4 Existing approaches

5.4.1 Relation between SC and other constraints

As far as we know, SC has never been tackled directly in CP. However some
work has been done for the constraint NV alue counting the number of dis-
tinct values used by a vector of variables, that is close to SC. This constraint
was first introduced in [PR99]. This is a generalization of the well-known
AllDiff constraint [Rég94, van01].

Bessière et al. [BHH+05] decomposed NV alue into two constraints:

AtLeastNV alue(N, X = {X1, . . . , Xm})

and
AtMostNV alue(N, X = {X1, . . . , Xm})

where N is an integer and Xi are FD variables having D(Xi) as domain.
AtMostNV alue holds if the assignment of the m variables Xi uses at most
N different values. Formally AtMostNValue holds iff |{Xi : 1 ≤ i ≤ m}| ≤ N
and AtLeastNValue holds iff |{Xi : 1 ≤ i ≤ m}| ≥ N . We now show that
AtMostNV alue is equivalent to SC with uniform weights (cj = 1, ∀j).

Proposition 7 Unicost SC is strictly equivalent to AtMostNV alue
(NV).

Proof Define U = {1, . . . , m} and Si = {j | i ∈ D(Xj)}, ∀i ∈
⋃

1≤i≤m D(Xi). Entailment of the original AtMostNV alue is
equivalent to entailment of SC(N, T,U , X) and vice versa. set
covering problem is NP-Hard, this shows that computing the min-
imum value for N is also NP-Hard.

This shows that every filtering algorithm developped for one of these two
problems can directly be used to prune variables of the other problem. The
following of this section applies existing techniques to solve AtMostNV alue
to SC.

Interesting Facts for Computing a Lower bound on N

Before describing the existing approaches to compute lower bounds on N ,
we introduce the intersection graph@intersection graph GX GX = (V, E)
of a collection of subsets X = {X1, . . . , Xm}, where V = U and E =

- 28 -



{(i, j) | D(Xi) ∩ D(Xj) 6= ∅}. We can observe that, for a given instance
of SC, finding the largest independent set ( set of vertices being pairwise
non-adjacent) of GX is equivalent as solving the dual problem of SC, that is
the set packing problem. In the case of a unicost SC (cj = 1, ∀j = 1, . . . , n),
the formulation of the set packing problem can be formulated as

SP ∗ = max
y∈Bm

∑

1≤i≤m

yj (SP )

such that

yi + yj ≤ 1 ∀(i, j) ∈ E

yi ∈ {0, 1} ∀1 ≤ i ≤ m

The set packing problem is an NP-Hard problem. If we denote SC∗(resp.
SP ∗) as the optimal value for the set covering problem (resp. set packing
problem), SCL∗(resp. SPLin∗) as the optimal solution of the linear relax-
ation of the set covering problem (resp. set packing problem), we have from
optimisation theory (see Section 3.4) that

SP ∗ ≤ SPLin∗ = SCL∗ ≤ SC∗ (5.3)

Thus a lower bound on SP ∗ is also a lower bound lbSC of SC∗. If we
denote the independance number of a graph G by α(G), then from (5.3),

lbSC = α(GX) = SP ∗ ≤ SC∗ (5.4)

5.4.2 Four lower bounds on N

Four approaches exist for computing a lower bound on N .

Linear relaxation of SC (SCL∗) If we relax the integrality constraint of
SC, i.e. replacing xi ∈ {0, 1} by 0 ≤ xi ≤ 1 we obtain the linear
relaxation of SC, that we denote SCL. From (5.3) we have that lbSC =
SCL∗ is a lower bound on SC∗. This bound is better than any bound
on SP ∗. However it is relatively expensive to compute.

Ordered interval algorithm (OI) In [BCT02], Beldiceanu deals with N-
Value where the domain of each variables Xi is an interval. In this
special case, he achieves bound-consistency in polynomial time. If

- 29 -



we denote m domain variables whose domains are intervals by I =
{I1, . . . , Im}, then this algorithm computes α(GI). If we denote the
smallest enclosing interval of the domain of each variable Xi by Ii,
then this algorithm can be used to compute a lower bound of α(GX),
as GI contains at least all edges of GX and eventually some others,
thus lbSC = α(GI) ≤ α(GX).

Greedy algorithm (MD - for Minimum Degree) Consider the graph GX =
(V, E). Let Γ(v), v ∈ V be the set of neighbours of node v and Γ(S) =
⋃

v∈S Γ(v). Initially, set S = ∅. Choose the node v ∈ V \ (S ∪ Γ(S))
of minimum degree. Add v to S and loop until S ∪ Γ(S) = V . At the
end S will be an independent set of GX and lbSC = |S| will be a lower
bound of α(GX) = SP ∗ ≤ SC∗.

Turán@turan’s approximation (TA) Use the lower bound for α(GX)

proposed by Turán in [Tur41]: lbSC =
⌈

n2

2m+n

⌉

≤ α(GX) = SP ∗ ≤ SC∗.

From equation(5.3), we deduce that SCL∗ is a tighter bound than the
other three. MD is at least as strong as TA. OI is sometimes better,
sometimes worse, than MD and TA (see [BHH+05] for details).

Experience will compare these four methods for pruning the domain of
N with the method described in the next chapter.
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Part III

A Global Constraint for the Set
Covering Problem
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Chapter 6

A new SC lower bound: 2SC

In this section we present another relaxation of SC. It can be used in a CP
framework to compute a lower bound of SC∗ and to prune the domain of N
as explained in the previous section. The main advantage of this relaxation
is that it can be solved incrementaly, being a good choice in a search-tree
scheme as will be pointed out in the experimental section.

In the first section we decribe the principles of this relaxation. Then we
describe an incremental algorithm for computing the optimal value of the
relaxation 2SC. First we will give six necessary and sufficient conditions for
an edge cover R of a bipartite graph to be of minimum weight. Then we
will describe an algorithm maintaining the five first conditions as invariant
and looping in order to end with the sixth condition holding. Third we will
explain how we can update the data structure used by the algorithm to reflect
small changes in the bipartite graph (removal/insertion of edges). Finally we
will enumerate a few algorithmic enhancements of this algorithm. In the last
section pf this chapter we will describe some heuristics for computing the
bipartite graph needed in the relaxation 2SC.

6.1 Principles

An interesting relaxation is based on the fact that a set covering problem with
subsets Si containing exactly two elements, that will be denoted as 2SC, can
be solved in polynomial time. This relaxation was explored in a strictly MIP
context in [EDM92] for the set covering problem and in [LW79] for the set
partitionning problem (i.e. the set covering with equality constraints instead
of inequalities).
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To solve 2SC, we can build a graph G with one vertex representing one
element of U and one edge representing one 2-set (a set with exactly two
elements) Si from the collection X. A minimum weight edge cover of G would
represent a minimum set cover of 2SC. Every set covering problem SC can be
decomposed into a 2SC problem in such a way that the graph G is bipartite.
This is motivated by efficiency as computing minimum edge covers in general
graph is computationaly more expensive (as for the matching problem).

Let us define E(Si) the decomposition of Si in 2-sets:

E(Si) = {S1
i , . . . , S

k
i }

.

such that ∀i : 1 ≤ i ≤ n,

|Sj
i | = 2 ∀Sj

i ∈ E(Si) (6.1)

Si =
⋃

S
j
i ∈E(Si)

Sj
i (6.2)

If we define weight cj
i on the 2-subsets Sj

i such that

ci =
∑

S
j
i ∈E(Si)

cj
i , (1 ≤ i ≤ n) (6.3)

where ci is the cost associated to the subset Si, then 2SC will be a re-
laxation of SC because any set cover of SC will be a set cover for 2SC with
exactly the same weight. Clearly a solution to the relaxation 2SC will provide
a lower bound of the minimum weight of the original SC problem.

If we denote the optimal value of the 2SC problem as 2SC∗, it can be
shown that (see Section 6.4)

2SC∗ ≤ SCL∗ ≤ SC∗ (6.4)

This lower bound can thus be used in the propagator for the SC con-
straint. We now show how to compute this lower bound efficiently.

6.2 Incremental algorithm

The relaxation presented in the previous section wouldn’t be of any interest
if we could not solve it efficiently to optimality. The aim of this section is
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to present a new incremental algorithm for the computation of 2SC∗. We
illustrate how we can solve 2SC and how we can update the optimal solution
when we restrict the edge cover we want to find, for instance by imposing
that all edges from the decomposition of a subset Si must be part of the
edge cover. This is very important in a search-tree scheme in order to prune
domains very quickly.

The weighted 2SC problem introduced in the previous section has a lot of
similarities with the maximum weighted matching of a graph. We therefore
present a reasoning based on the Hungarian method [Kuh55] to solve this
last problem. As in the previous section, we will assume the graph G built
from 2SC is bipartite.

The aim of the 2SC problem is to find a minimum weight edge cover
R of a bipartite graph G = (V, E). The edge cover can be restricted: an
edge (i, j) ∈ SURE if and only if (i, j) must be part of the cover, (i, j) ∈
REMOV ED if and only if it must not be part of the cover. A node i will
be defined as SURE if it is the endpoint of an edge being in SURE. A vertex
v from G is critical wrt cover R if exactly one edge from R is incident to v.
A vertex v is non-critical otherwise. For now we consider edge weights being
constant.

In order to have a strong basis for the following, here is the IP formulation
of 2SC:

2SC∗ = min
∑

e∈F

cj
iy

j
i +

∑

e∈SURE

cj
iy

j
i (6.5)

∑

(i,j)∈E

yj
i ≥ 1 ∀ vertex i /∈ SURE (6.6)

0 ≤ yj
i ≤ 1 ∀(i, j) ∈ F (6.7)

where F = E \ (SURE ∪ REMOV ED) is the set of edges which we
do not know whether they are part of an optimal constrained edge cover.
Constraint (6.7) is necessary as we allow negative weights cj

i . It should
be noted that in the previous formulation, we did not constrain yj

i to be
integral. Indeed the matrix defining the constraint (6.6)-(6.7) meets the three
conditions of Theorem 5 and is thus totaly unimodular, so the objective value
of the optimal linear solution is equal to the objective value of the optimal
integral solution.

Results in optimisation theory (commonly called the KKT conditions, see
[Kar39, KT50]) give necessary and sufficient conditions for a solution of a LP
problem to be optimal. Let π(i) be the dual variables of constraints (6.6).
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The KKT conditions state that a set of edges (defined by yj
i ’s) is a cover and

is optimal iff

(i). π(i) ≥ 0 ∀node i, π(i) = 0 ∀ i ∈ SURE

(ii). c̄j
i ≤ 0 if (i, j) ∈ F and yj

i = 1

(iii). c̄j
i ≥ 0 if (i, j) ∈ F and yj

i = 0

(iv).
∑

(i,j)∈E yj
i − 1 ≥ 0 ∀ vertex i

(v). π(v) = 0 if vertex v is non-critical, ∀v ∈ V2

(vi). π(v) = 0 if vertex v is non-critical, ∀v ∈ V1

where the reduced cost are defined by c̄j
i = cj

i−π(i)−π(j). Algorithm 6.1
solves weighted 2SC optimaly and is based on the conditions (i)-(vi). Be-
ginning with a solution respecting (i)-(v), the algorithm loops in such a way
that strictly less vertices i don’t respect (vi) at each iteration. It ends when
no such vertex i exists.

The intuitive idea behind the algorithm (as for matching algorithms)
is to select a node v0 not respecting (vi) and to decrease the number of
edges incident to v0 being in the cover. This is done by finding alternating
paths. An alternating path wrt a cover R from v0 to vk is a sequence p =
[v0, v1, . . . , vk] of nodes such that edges (vi, vi+1) are alternatevely from R
and from E \ R. If v0 = vk then exactly one edge of (v0, v1) and (vk−1, vk)
belongs to R. An admissible alternating path L from v0 to vk is defined as
an alternating path with

• Either (v0, v1) ∈ E \R or v0 is non-critical
AND

• Either (vk−1, vk) ∈ E \R or vk is non-critical

The following result, similar to [Ber57], states that a cover augmented by
an admissible alternating path remains a cover.
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Proposition 8 If L is an admissible path wrt a cover R of G, then the
set of edges R′ = R⊕ L = (R \ L) ∪ (L \R) is a cover of G.

Proof By the way we defined R′, it is built from R by removing all
edges from R∩L and adding edges from L \R. If L = [v0, . . . , vk]
then , for x = v2, . . . , vk−1, we will remove from R an incident
edge of x and add another edge from L \ R incident to x. Thus
v2, . . . , vk−1 are still covered by R′. If (v1, v2) ∈ E \R then R′ will
contain one more edge incident to v1 than R and v1 will be covered
by R′. If v1 is non-critical then R′ will have one less edge incident
to v1 than R. But as v1 is non-critical, v1 will still be covered by
R′. We can do the same reasoning for the edge (k − 1, vk). Thus
all nodes are covered by R′.

The algorithm finds a node i not respecting (vi) and augments the current
cover by an admissible path from i (with the first edge being in the cover).
This strictly decreases the number of edges incident to i and being in the
cover. After some iterations, node i will become critical and will thus respect
(vi). The algorithm loops until there is no more such node. The algorithm
explores admissible path of increasing weight (shorter admissible path are
prefered).

Correctness of the Algorithm The inner loop (7)-(15) of Algorithm 6.1
modifies dual values π in order to find new admissible paths from node i.
We can observe that if δ = β or δ = −γ then the tree T strictly grows. If
δ = α then an admissible path is found (i is non-critical and ek ∈ E \R). As
the loop finishes if δ = α (because ∃w ∈ V T

1 | π(w) = 0) and T cannot grow
forever, the inner loop (7)-(15) will iterate a finite number of times.

The outer loop (5)-(18) iterates until node i respects condition (vi). After
we modify the current edge cover R ← R ⊕ p, there will be one less edge
incident to node i in R because the first edge (v0, v1) ∈ R for all admissible
path [v0, v1, . . . , vk] in T (R is still an edge cover from Proposition 8). Thus
after a finite number of iterations, node i will become critical and the outer
loop (5)-(18) will end.

Updating of the bipartite graph When we need to restrict our cover to
contain or not to contain specific edges, we cannot simply move these edges
to a different linked list and mark them as SURE or REMOV ED. This
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computeMin2SC(2SC = (G,C,M))

PRE: - G = (V1, V2, E) a bipartite graph, C = {cj
i}: weights for all edge

(i, j) ∈ E, M ⊆ E
POST: - R ∪ M is a minimum weight edge cover EC∗ of G such that

M ⊆ EC∗

1: Let R← E and define initial values for π(v) ≥ 0 such that (i)-(v) hold
2: Verify R cover all nodes of G. If not then return IMPOSSIBLE
3: Let [v1, . . . , vn] be an enumeration of all nodes of V1

4: for i | ∄j, (i, j) ∈M do
5: while vi is non-critical and π(vi) > 0 do
6: T = (V T

1 , V T
2 , ET )← computeT (G = (V, E), R, vi)

7: while ∄w ∈ V T
1 : π(w) = 0 and ∄w ∈ V T

2 , w non-critical do
8: α← min

{

{+∞} ∪ {π(v) | v ∈ V T
1 }

}

9: β ← min
{

{+∞} ∪ {cj
i | (i, j) ∈ E \R, i ∈ V T

2 , j /∈ V T
1 }

}

10: γ ← max
{

{−∞} ∪ {cj
i | (i, j) ∈ R, i ∈ V T

1 , j /∈ V T
2 }

}

11: δ ← min(α, β,−γ)
12: π(i)← π(i)− δ, ∀i ∈ V T

1

13: π(j)← π(j) + δ, ∀i ∈ V T
2

14: T = (V T
1 , V T

2 , ET )← computeT (G = (V, E), R, vi)
15: end while
16: Let p be the alternating path from vi to w in T
17: R← R ⊕ p
18: end while
19: end for
20: return R ∪M

Algorithm 6.1: Algorithm for weighted 2SC

is due to the fact that we still want the invariant (i)-(v) to hold after this
change.

Before presenting how we modify the structure of the graph, we introduce
an operation removeFromCover(i,j) that allows to make free an edge (i, j)
from the cover while satisfying the invariant. When we want to remove an
edge (i, j) from the cover, we must ensure that nodes i and j are still covered
by other edges (condition (iv)). If not, for the uncovered node i (resp. j), we
must add the edge of minimum reduced cost c̄min in the cover and increase
the π(i) (resp. π(j)) value in order to make this reduced cost negative.

When we want to put an edge (i, j) in REMOV ED, we can use the op-

- 37 -



computeT(G = (V, E), R, vi))
PRE: - v0 ∈ V1 ∪ V2, R ⊆ E
POST: - Return a tree built with the alternating paths beginning at v0:

T = (V T
A , V T

B , ET ) such that

• V T
A = {vk ∈ A | ∃ an alternating path wrt R

[v0, v1, v2, . . . , vk−1, vk] with (v0, v1) ∈ R, cvi−1,vi
= 0, ∀i =

1, . . . , k. V T
A = {v0} if no such path exists.

• V T
B = {vk ∈ B | ∃ an alternating path wrt R

[v0, v1, v2, . . . , vk−1, vk] with (v0, v1) ∈ R, cvi−1,vi
= 0, ∀i =

1, . . . , k. V T
B = ∅ if no such path exists.

• ET = {(vi, vi+1) | ∃ an alternating path wrt R
[v0, v1, v2, . . . , vi, vi+1, . . . , vk−1, vk] with (v0, v1) ∈
R, cvi−1,vi

= 0, ∀i = 1, . . . , k

Algorithm 6.2: Algorithm to compute an alternating tree

eration removeFromCover(i,j) and then just mark (i, j) as being removed.
The invariant will hold after removal.

To put (i, j) in SURE we must set π(i) = π(j) = 0 in order to modify
all the reduced costs accordingly (this can be seen by applying the KKT
conditions on the same problem without the cover constraint (iv) for nodes i
and j. Then because we could have decreased π(i) or π(j), some edge (i, k)
or (i, k) incident to these nodes and being in the cover could have a positive
reduced cost. If this is the case, we must remove them from the cover by
using the operation removeFromCover.

When we want to make an unknown edge (i, j) that was previously in
SURE, we can put it in the cover if c̄ij ≤ 0. Otherwise we set it free. In
this last case, we must check that both i and j are still covered. If not we
put in the cover the edge of minimum reduced cost and we increase π values
accordingly.

To swap an edge (i, j) from REMOV ED to unknown, we mark it as
covered or free depending solely on its reduced cost.

After having updated the bipartite graph, applying the algorithm will
make (vi) hold. The algorithm should only search for a few new admissible
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paths of negative weight. Such a local adjustment can also be performed
after the weights are changed (see next section). This is very attractive for
us because algorithms for propagators should be highly incremental in order
to be fast through all the search tree. This advantage is demonstrated in the
experimental results (see Section 10.1) where we can observe a small overall
time per call to the propagator.

Algorithmic improvements We can improve this algorithm similarly as
in [MN99, p.423-424]. If we consider the inner loop (7)-(15), we define δk as
the computed value of δ at the k-th iteration of this loop and ∆k = δ1+. . .+δk.
∆ is the total change during the execution of the inner loop, i.e. if the inner
loop iterates K times, then ∆ = ∆K . Let µ(w) be the shortest distance from
vi to w with respect to the absolute value of the reduced costs of the edges
defined by the dual values πi computed before going into the inner loop for
the i-th time (i.e. the dual values at line (6)). We can observe the following

Lemma 9 For all nodes w, w is added into T at the iteration j iff
∆j = µ(w).

Proof The proof is direct as T is defined as a tree with zero-
reduced cost edges and that at each iteration, we modify π values
of all nodes being not Thus T . Thus w will be added in T as soon
as we will have modified π(j) by µ(w).
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This leads to the following interesting result

Lemma 10 Let minA = min{µ(a) + π(a) | a ∈ V1} and minB =
min{µ(b) | b ∈ V2}. Then ∆ = min(minA, minB) and the total change
in the dual value for a node w is equal to max(0, ∆− µ(w)). Define z
as a node such that µ(z) = min(minA, minB). Then let p be a path of
length µ(z) from vi to z. Then for all edges (i, j) of p, c̄ij = 0.

Proof We have ∆ ≤ minB from the preceding lemma. ∆ ≤
minA as when we will have modified π values of an amount of
∆, pi(a) = 0 and the inner loop would end. ∆ cannot be strictly
smaller than minA or minB because this would tell us we have a
node a or b defining minA or minB.
As we only modify π values of the nodes in T , and that a node w
is added into T only if ∆ ≥ µ(w), we have that if ∆ > µ(w), then
we haven’t changed the dual value π(w). On the other hand, if w
were added into T say at the iteration i, then its dual value will
have changed by a value of ∆ −∆i. From the preceding lemma,
we have ∆i = µ(w).
c̄ij = 0 for all edges in the path as they belong to T too, and T
contains only zero-reduced cost edges.

This allows us to modify the inner loop (7)-(15). We compute a shortest-
alternating-paths tree from vi using a variant of Dijkstra’s algorithm. As
the nodes in the graph are reached in increasing order by this algorithm, we
can stop it as soon as we are sure to have found a node defining minA or
minB. Let v1, v2, . . . , vk be the order in which nodes from V1 are reached by
Disjkstra’s algorithm. Recording dual values are positive π(v) ≥ 0 we have

(1) If
minAi = min{µ(vi) + π(vi) | i < k, vi ∈ V1} ≤ µ(vk)

and no vj with j < k is a non-critical node of V2, then ∆ = minAi.

(2) If
min{µ(vi) + π(vi) | i < k, vi ∈ V1} ≥ µ(vk) = minBi

and vk is a non-critical node of V2 then ∆ = minBi.

This follow from lemma (9) and (10). Now if k is minimal such that either
(1) or (2) hold, then ∆ ≤ µ(vj) for all nodes j > k and thus their dual values
π are not changed.
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In the following section we show how to decompose the initial set covering
problem into a 2SC problem in such a way that the underlying graph G is
bipartite.

6.3 Construction of the underlying graph

In order to compute this new lower bound on SC∗, we must build a bipartite
graph G as explained in the previous section. Several graphs G are possible
for a given instance of SC. For example a heuristic is proposed in [EDM92].
Let Hj = {e ∈ U | e ∈ Sj and qj = ⌊|Hj|⌋}. In order to relax SC to a 2SC,
they create a bipartition (R′, R′′) of the set U : U = R′ ∪ R′′, R′ ∩ R′′ = ∅.
For a given element i, if |{j : i ∈ Sj}| < qj , then i ∈ R′. Otherwise i ∈ R′′.
They build the bipartition by looping on all the elements in U and by putting
elements in R′ or in R′′ accordingly. They add two different dummy elements
to R′ and R′′. Next they decompose each set Si into several 2-sets Sj

i such
that they contain exactly one element in R′ and one element in R′′ and such
that (6.1)-(6.2) hold ∀i : 1 ≤ i ≤ n. In this case the graph G will be bipartite
and 2SC can be solved by finding a minimum weight edge covering on this
bipartite graph.

6.4 Improving 2SC by Lagrangean relaxation

In this section we will enhance the lower bound of SC∗ obtained from the
relaxation 2SC. The enhancement 2SCLag∗ of 2SC∗ leads to a lower bound
equivalent to the linear relaxation:

2SC∗ ≤ SCLag∗ = 2SCL∗ ≤ SC∗ (6.8)

Our objective is to compute SCLag∗ = 2SCL∗ by mean of the algorithm
presented in the previous section that take advantage of the structure of 2SC.

We can use Lagrangean relaxation (see Section 3.6) in order to compute
tighter lower bound of SC∗. The two problems SC and 2SC can be made
equivalent by adding the following constraints to 2SC

Sk
i ∈ SC ⇐⇒ Sl

i ∈ SC, ∀1 ≤ i ≤ n, ∀Sk
i , Sl

i ∈ E(Si) (6.9)

2SC with the additional constraint (6.9) can also be formulated as the
following optimisation problem (equivalent to the optimisation SC)
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v = min
∑

1≤i≤n

∑

j | S
j
i ∈E(Si)

yj
i c

j
i (6.10)

By ≥ 1 (6.11)

yj
i = yj+1

i (6.12)

1 ≤ j ≤ |E(Si)| − 1, ∀1 ≤ i ≤ n

y ∈ {0, 1} (6.13)

1 ≤ j ≤ |E(Si)| − 1, ∀1 ≤ i ≤ n

where yj
i tells whether the set Sj

i belongs to the solution and B is the
incidence matrix of all 2-sets (there are exactly two 1’s in each column). Con-
straint (6.11) expresses we want to find an edge covering of G and constraints
(6.12) are equivalent to (6.9), i.e. for a given subset Si, either we take all
subsets Sj

i from its decomposition or we don’t take any of them.

To approximate v, the constraints (6.12) are dualized to obtain a La-
grangean relaxation of this problem [LW79, EDM92]. Define λj

i as the La-

grangean multiplier of constraint yj
i = yj+1

i . Let λi = {λ1
i , . . . , λ

|E(Si)|
i } and

λ = {λ1, . . . , λn}, the Lagrangean multipliers of constraints (6.12). We define
λi0 = 0, (1 ≤ i ≤ n). Then the Lagrangean subproblem is given by

2SC(λ) = min
∑

1≤i≤n

∑

1≤j≤|E(Si)|

yj
i d

j
i (6.14)

subject to (6.11) and (6.13), where dj
i = cj

i + λj
i − λj−1

i . 2SC(λ) is a
minimum weighted edge covering of a bipartite graph problem; it has exactly
the same structure as 2SC, only the weights of the edges are modified. It is
interesting to consider how the Lagrangean multipliers λj

i can be interpreted.
If we consider λj

i , (1 ≤ j ≤ |E(Si)| − 1) we observe it is present with a
coefficient +1 in dj

i and with a coefficient −1 in dj+1
i . So any value of λj

i

doesn’t change the sum dj
iy

j
i + dj+1

i yj+1
i . Thus, for any assignment of λj

i ,
∑|E(Si)|

j=1 dj
i =

∑|E(Si)|
j=1 cj

i = ci. By definition of weights cj
i (see equation (6.3)),

the Lagrangean multipliers λi can be interpreted as a repartition of the weight
ci among all subsets Sj

i of the decomposition of Si. It shows it is not necessary
to design two heuristics for computing weight cj

i and Lagrangean multipliers

λi. Any assignment for cj
i such that

∑|E(Si)|
j=1 cj

i = ci is correct and we only
have to design a good heuristic to compute initial Lagrangean multipliers
and to modify them. Because there is no restriction in sign for λj

i , the new
weights dj

i could be negative.
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As 2SC(λ) is a relaxation of SC for all λ (i.e. 2SC(λ) ≤ SC∗, ∀λ), we
are interested in finding a λ such that 2SC(λ) is maximum, i.e. solving

SCLag∗ = max
λ

2SC(λ) (6.15)

We can use the subgradient algorithm presented in Section 3.6 to solve
this problem.

The Lagrangean relaxation provides a lower bound at least as tight as the
linear relaxation. In our case, because the matrix B in the constraint (6.11)
is totally unimodular, we have

SCL∗ = max
λ

2SC(l) ≤ SC∗ (6.16)
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Chapter 7

Handling of large-scale Set
Covering Problems

In this chapter, we will focus on important problems that can be handled
by a set covering formulation with a huge collection X of subsets. The
vehicle routing problem (VRP) will be discussed as a concrete example of
such problems.

7.1 Needs and challenges

The general CP approach presented in Section 5.1 requires the knowledge
of the collection X, containing all the subsets. This collection needs to
be explicitly specified. However in many real-life problems, this collection
cannot be known explicitly. This usually happens when the collection is
defined as the set of solutions of a combinatorial problem. For instance in
the vehicle routing problem, X should contain all routes starting and ending
at the depot and respecting some constraints. The number of such routes is
exponential, and thus we cannot list all subsets to use the SC constraint as
presented before.

The solution presented in this section is to allow the user to define inten-
tionally the collection X by mean of a SCP. All solutions to the SCP will be
considered as a member of X. However we still need to compute a tight lower
bound as in Section 5.1 while we don’t have all columns at hand. A tech-
nique generally used to solve an optimization problem (either to optimality
or not) when we do not know all columns is the column generation presented
in Section 3.7. We will present in this chapter how we integrate column
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generation in the SC constraint. Besides describing a general framework for
such integration, we want to highlight some parts that can be efficiently and
generally implemented, i.e. independently from the problem to solve.

Section 7.2 formulates a well-known problem that require column genera-
tion to be solved. Section 7.3 overviews what can be found in CP litterature
to solve very large-scale problems such as the VRP or the Crew Assignement
Problem. Section 7.4 presents the general framework to integrate column
generation techniques in the SC constraint and lists some design options
found in the litterature. Section 7.5 explains our choices we made in the
design of the column generation process embedded in the SC constraint.

7.2 Formulations of a practical problem (VRP)

The efficiency of the set covering formulation of the VRP is described in
[BL94] where it is proven that the relative gap between optimal fractional
and integral solutions becomes arbitrarly small as the number of customers
increases.

7.3 Existing approaches to solve large-scale

problems with Constraint Programming

This section introduces some work that we found interesting in the litterature
that aims at solving large-scale problems with Constraint Programming. We
don’t want to present an exhaustive list of all papers we have found. We
will focus on the ones we thought to be the most useful to design a global
constraint for SC. These general ideas will be used to integrate Column
Generation and Constraint Programming in Section 7.4.

7.3.1 Column Generation and CP

A general framework for including constraint programming in a column gen-
eration framework is presented in [JKK+]. This framework aims at solving
the Pricing Problems arising in the column generation process by mean of
constraint programming. No factorization is presented and many idea were
already presented in other papers.
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This approach is used in [FJK+02] to solve the crew assignment problem.
The Pricing Problem is solved via constraint programming by the use of an
efficient Path constraint.

In [SZSF02], they present an integration of this framework and a heuris-
tic tree-search CP approach, emphasizing advantages and drawbacks of both
methods. The Crew Assignment Problem is considered. They modify the
CAP formulation by relaxing the set-partitionning constraints with set-covering
constraints (i.e. replacing = by ≥). Then they use their CP based column
generation framework (as presented in Section 7.3.1 to solve this relaxation
and use a search-tree scheme with constraint programming essentially to
build a feasible solution (i.e respecting the set-partitionning constraints) from
a solution to the set-covering relaxation.

7.3.2 Local Search and Constraint Programming

A local search approach is presented in [Sha98] in order to solve the VRP.
The neighborhood considered are very large (see [AÖEOP02] for a survey on
such neighborhoods), being impossible to explore it explicitly to determine
which neighbour is best. Here, a constraint-based tree search is used to find
good neighbours.

The moves are defined as removal and re-insertion of customer visits.
The algorithm selects several visits for removal at once and re-inserts them
all together. This allows to define the large neighborhoud. A key point to
this algorithm is that it chooses the visits for removal so that they are related.
In order to define this relatedness, it uses a function R : M ×M → R, where
M is the set of locations we must serve. This function usually is defined by
mean of the distance between visits and the fact that visits are served by the
same vehicle. The function proposed in [Sha98] is

R(i, j) =
1

cij + Vij

where cij is the cost to go from location i to location j and Vij = 1 if i
and j are served by the same vehicle, Vij = 0 otherwise. cij are assumed to
be in the range [0; 1].

In order to control the size of the neighboorhoud, the algorithms first try
to find r = 1 visit to remove and to re-insert it. Then if a moves didn’t yield
an improvement in the solution, it increases r by one.
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Re-insertion of the selected visits is done by solving a CSP by branch-and-
bound. This allows to prune the set of vehicles that could serve each visits,
and thus to construct feasible subsets quickly. In this CSP, the variable V
are the visits to be re-inserted and the domains are the set of routes r that
could serve a visit. The most constrained variable rule is used to select which
variable V (visit) to assign in the search procedure. The value selection rule
selects the route r such that the increase in overall cost if route r serves visit
V is minimum. Limited Discrepancy Search (LDS) is used in order to quickly
explore a large part of the search-tree.

7.4 Integration of column generation in the

SC global constraint

We will explain in this section how we can integrate column generation tech-
niques in the CP approach presented in Section 5.1. This section will point
out all parts that need to be implemented in order to clearly present the
work that can be factorized in the SC constraint and part that is under the
responsability of the user.

The general workflow for solving large-scale problem with CP is de-
picted in Algorithm 7.1. It is an extension of the workflow depicted in
Algorithm 5.1.

In the following, we will explain each step in Algorithm 7.1 and list differ-
ent ways of implementation to solve problems whose SC is a generalization.

7.4.1 Generating the initial set of columns

In order to use the column generation, we need to price feasible columns by
using a dual solution. So we need to define an initial master problem, by
generating initial columns. The primary goal of this initial set of columns is
that there exists a feasible solution for the Master Problem in order to obtain
valid dual values. Note that each column in this set needs not to be solution
of the Pricing Problem.

In [FJK+02], the Master Problem is a set-partitionning with column gen-
eration. Because finding a feasible solution to SPP is NP-Hard, they add
dummy columns in order to ensure that a feasible solution always exists.

However, because we price columns using dual variables, a good initial set
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FilterSC()

1: C = ∅; R = ∅
2: H = getInitialColumns(D(T )) // Building initial set of columns
3: while H 6= ∅ ∧ ¬stopping criterion do

4: C ← C \R ∪H
// Adding good columns and re-

moving bad ones
5: SCRel = buildSCRel(C) // Building the relaxation
6: (SCRel∗, λ) = solve(SCRel) // Solving the relaxation

7: (lb, H) = good columns(λ) // Finding good columns with a
heuristic

8: R = bad columns(λ) // Choose columns to remove
9: if H \ C = ∅ then

10: (lb, H) = optimal(λ)
// If the heuristic fails in finding

good columns, solve the sub-
problem optimally

11: end if
12: if lb > D(N) then

13: return {(N,D(N))}
// if lb is greater than the upper

bound of N , we prune all the
domain of N

14: end if
15: end while
16: return {(N, [ D(N); SCRel∗[ )}

Algorithm 7.1: Filtering algorithm of the SC constraint with column gen-
eration

of columns could be very important. The ideal situation is when the problem
of finding a feasible solution is not difficult. In this case we can use a primal
heuristic to find several good columns.

A tree-search constraint programming approach is used in [SZSF02] to
find initial feasible solutions. No optimization is done at this stage, the main
goal being to generate a medium-size set of columns from which we can find
a solution to the Master Problem to derive good dual values for the pricing
step.

Depending on the problem local search could be a good choice to generate
good primal solutions.

Attention should be paid not to generate too similar columns. These
should be diversified in order to obtain fair first solutions. Local search can
be of a great help to generate columns satisfying the diversity condition in a
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small amount of time.

7.4.2 Solving current MP

This step tries to solve the current master problem to obtain a dual solution
that will provide us interesting information to generate the following set of
columns by pricing them.

Theorically, we need the optimal dual solution in order to assert that the
current set of columns is optimal, i.e. that all columns not in the current
MP with strictly positive cost are not part of the optimal solution. The best
solution to solve the Master Problem optimally is to solve it by the simplex
algorithm. It can incrementally find the optimal solution when we add or
remove a few columns.

However computing the optimal dual solution can be time-consuming
and a nearly optimal solution could be found quickly. A useful design is not
to solve the current Master Problem optimaly at each iteration of the loop
(3)-(15).

In [GSMD99], they use a stopping criterion for the LP solver: they stop
the solver when it does not improve the solution enough in a given number
of iteration steps. This allows to spend less time solving LP problems to
optimality and allows to branch faster and thus to obtain solutions in a
smaller amount of time.

Lagrangean relaxation of the Master Problem could also provide us with
near-optimal dual values (also called Lagrangean multipliers). This technique
is efficiently applied to the set covering problem in [CFT99]. They present
an improved step-size and step direction for the subgradient algorithm that
leads to a faster convergence.

7.4.3 Removing Bad Columns

With the current solution, we could use a heuristic to determine whether
some columns in the current Master Problem has very small probability to
be part of an optimal solution. Such columns could be removed from the
Master Problem to allow faster optimization.

The main idea behind column generation is to price columns. One chooses
columns with highly negative cost to enter the master problem. [BJN+98]
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proposes to remove from the Master Problem the columns with a highly
positive reduced cost.

Depending on the structure of the problem, we could use another heuristic
to remove such columns.

7.4.4 Adding Valid Columns to the Restricted Master

Problem

Once we have a primal and a dual solution, we need to create a subset of
columns to add in the Master Problem. These columns should be created
such that we would strongly believe they are part of an optimal solution.
Some heuristic could provides such subsets of columns very fast.

If no column with negative reduced cost can be found using fast heuristic
algorithms, we need to solve the Pricing Problem to optimally.

Heuristics to create valid columns

Two heuristics for VRP are presented in [SS]: one is a construction algorithm
and the second is an improvement algorithm.

The first heuristic initializes a route being empty then add repeatedly
requests with negative reduced costs until no more such request exists.

The second heuristic selects columns with zero-reduced cost (at least all
columns in the current solution have such reduced costs), and modify them
with local-improvements algorithm to obtain hopefully better columns.

An important point in this step is the diversity of generated columns. It is
useless to add many similar columns. However adding very different columns
can lead to very good dual information. A well-used strategy in practice is
to impose that an element cannot appear in more than K different generated
columns, for a fixed constant K. In the case of the crew assignment problem,
the number of times that a crew-pairing assignment appears can be bounded
in the same manner (see [FJK+02]).

In [SS], they also work with approximate insertion cost, instead of true
reduced costs for columns. This allows to use their heuristics without solving
MP.
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Optimizing the CG subproblem

If heuristics cannot find improving columns, we need to solve the Column
Generation subproblem optimally. Solving th subproblem is problem depen-
dent.

For a lot of problems (such as vehicle routing and crew assignment), the
subproblem is a constrained short est path in a acyclic graph problem. A
dynamic program exists to solve this problem. When there are a lot of side
constraints in the subproblem, sometimes constraint programming is used to
solve it using an efficient Shortest Path Constraint [FJK+02, SZSF02].

We can speed up the optimization by reducing the size of the pricing
problem. For instance when we need to solve Constrained Shortest Path
Problems, we could remove arcs that will unlikely be part of the optimal
solution. Then some solutions will be found faster (see [DY91]).

7.5 Our integration of Column Generation and

Constraint Programming

We present and justify our own design choices for the framework presented
in Algorithm 7.1. These choices are valid for the SC constraints and are not
problem-specific as was the case in Section 7.4. Some ideas presented here
are new and are generalizations of ideas presented in Section 7.4.

7.5.1 Choosing initial columns

In the case of the SC constraint, the Master Problem is a pure Set Covering
Problem. We should generate an initial set of columns at each node of the
search tree, or more generally at each call to the propagator. However from
one node to another, we can expect that the problem didn’t change so much
so that we can keep the last set of columns used. In order to ensure that there
exists a solution to the Master Problem, we add a dummy column covering
all elements with a very high cost.

Although it is not strictly necessary, it should be expected that a very
good initial set of columns at the root node would increase the computation
time. The experimental section 10.2 will point out the usefulness of using a
heuristic to generate columns at the root node.
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7.5.2 Solving Current MP

In order to obtain dual values to price columns we could use any relaxation
presented in Section 5.4.1 and in Section 6 that provides them (i.e. SCL∗,
SCLag and 2SC). However only SCL∗ ensures to get the optimal solution.

We use SCL∗ in order to solve the MP and to find dual values. We
implemented a stopping criterion for the Simplex algorithm in order not to
spend too much time optimizing dual values in the first step of the column
generation process. As in [GSMD99], the simplex algorithm is stopped if it
does not get a substancially better solution after n iterations.

7.5.3 Choosing which columns to add to the pool

Two approaches can be used to generate new columns: heuristics or complete
algorithm. All generated columns should respect a set of constraints C spec-
ified by the user. Being in a constraint programming framework, we use a
CSP to generate these columns. We post all constraints c ∈ C. The heuristic
and complete algorithms differ from the branching scheme used. The general
algorithm (either complete or heuristic) is presented in Algorithm 7.2. Two
procedures must be defined: createCSP and branch. createCSP is problem
dependent and must be defined by the user. branch is a search heuristic as
defined in Section 2.3.2. The aim of this section is to present several solutions
for designing the branch procedure.

PRE: - x∗ the optimal LP solution of the current Master Problem
- createSCP is a function defined by the user that returns a CSP
and a set variable S. The value of S in all solutions of the CSP
are feasible columns of the Pricing Problem
- branch is a Branching scheme as defined in Section 2.3.2
- E the set of elements to cover

1: (CSP, S)← createCSP ()
2: CSP ← CSP + {Cost(S) < 0}
3: Pool← search(CSP, branch)
4: T := select some columns from Pool

Algorithm 7.2: Algorithm to generate new columns with reduced cost

- 52 -



Heuristic

For the heuristic we use an incomplete search-tree traversal in order to quickly
obtain columns with negative cost. We took ideas from local search algo-
rithms, because they revealed to be highly efficient though very fast. The
idea is similar as the ones used in the two improvement algorithms presented
in [SS]; we try to generate new subsets with negative reduced costs from the
subsets being part of the optimal solution of the Master Problem. Because
we don’t want to solve a LP problem to compute the real reduced cost of the
newly created subsets, we define the insertion and deletion costs [SS] of an
element e in subset Si as

I(e, S) = Cost(S + e)− Cost(S) + πe

and
D(e, S) = Cost(S − e)− Cost(S)− πe

They represent an approximation of the reduced cost of a subset after inser-
tion or deletion of an element. An abstract body for the heuristic is presented
in Algorithm 7.4. The main idea is as follows:

• choose a collection S of already built subsets; line:7

• remove some elements from some subsets from S; line:8-line:11

• re-insert these elements into subsets of S; line:14-line:19

At the end of the heuristic, we will have a collection S of subsets with
some of them being new. These can be added in the Master Problem and the
column generation process can go on. Algorithm 7.4 is a generalization of the
improvement algorithm presented in [SS] and of the local search algorithm
from [Sha98], even though these two last algorithms are very different.

We need to specify the following in order to completely design the heuris-
tic algorithm:

• When we consider the algorithm generated enough columns

• What is the collection of already built columns which we will create
other columns from

• Which element from which subset must be removed
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We choose to stop the search when either there is no subset with cost
less than Cmin in the last N generated subsets, or when we have generated
T subsets.

As in [SS], we decided to generate subsets from subsets having zero-
reduced cost wrt the current LP solution of the Master Problem.

removeElements(Subsets Ss, int toRemove, int D)

1: E =
⋃

S∈Ss S
2: e := chooseRandomElement(E)
3: E := E \ {e}
4: R = {e}
5: remove e from all subsets in Ss
6: while |R| < toRemove do
7: e := chooseRandomElement(R)

8: lst := rankUsingRelatedness(e, Ss)// Sort element with respect to
relatedness

9: rand := a random number in [0; 1[ // Choose the rDst element in lst
10: e := lst[Integer(|lst| ∗ rD)]
11: R := R+ e
12: remove e from all subsets in Ss
13: end while

Algorithm 7.3: Algorithm to select some elements to remove in the local
search algortihm

In order to selects how to remove elements, we use the local search al-
gorithm presented in [Sha98] rewritten in Algorithm 7.3. However we must
define another relatedness function because the one they give is specific to
the VRP. We use a idea similar to the simulated annealing to discover it. Let
P the current column pool

K(e, f) = {i ∈ P | e, f ∈ Si}

κ(e, f) =

∑

i∈K(e,f) Cost(Si)

|K(e, f)|

κtot =

∑

Si∈P
Cost(Si)

|P|

We use the following relatedness function

R(e, f) =
(αt)κ(e, f) + (1− αt)κtot

κ(e, f) + κtot

(7.1)
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where α = 1
T

and t is equal to the number of solutions already found (T is
defined above). We observe that κ(e, f)is in the range [0; 1]. In the beginning
of the heuristic, κ(e, f) does not depend on e and f . This allows to remove
elements in a random fashion. After a while, we will use the current column
pool to determine whether a lot of good subsets in the pool does contain
both elements. In this case, this would show that e and f are related. We
don’t need any information on the structure of the problem to compute this
value. This makes it a useful definition.

branchLS()
PRE: - S is the set-variable defining the subset we are currently building

1: R := ∅
2: if enough changes then
3: return ∅
4: end if
5: if E+ = ∅ then
6: Pool := Pool + S
7: S := chooseColumns(Pool)
8: while not enough removed elements do
9: (s, e) := chooseSubsetandElement(C)

10: S := S − s + (s− e)
11: end while
12: define E+ // define the elements to add
13: end if
14: if ∃e ∈ E+, s ∈ S | I(e, s) = maxe′∈E+ mins′∈C I(e′, s′) then
15: Ds := {D ⊕ (e→ {s}), D ⊕ (e→ D(e)− s)}
16: return Ds
17: else
18: return ∅
19: end if

Algorithm 7.4: Local Search algorithm to compute new columns

Complete Algorithm

The complete algorithm solve the same CSP by a branch-and-bound traversal
of the search-tree. The main idea in the branching scheme is to add the
element with the smallest dual values, doing it repeatedly until no more such
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elements exists. The simplest version of this branching scheme would be to
begin with an empty subset at the root node. An improved version would be
to begin with a subset already containing a few elements at the root node.
This allows to build not too similar columns. The complete search algorithm
is given in Algorithm 7.5.

branchComplete()
PRE: - x∗ an optimal LP solution
POST: - Add an element in S

1: S ← ∅
2: while ∃e ∈ S | I(e, S) < 0 do
3: Let e ∈ S | I(e, S) is minimum
4: S ← S + e
5: propagate
6: end while

Algorithm 7.5: Complete branching scheme to generate new columns

7.5.4 Choosing which columns to remove

As in most column generation scheme we chose to remove from the current
pool all columns with a reduced cost rc > D<

pool.

7.5.5 Pool Management

We describe here how columns are added and removed from the Master
Problem. As can be observed in Algorithm 7.2, the heuristic and complete
pricing algorithms add columns to the pool P. We still need to specify which
of the columns in P are effectively added to the Master Problem.

In order to add not too similar subsets into the Master Problem, we
greedily select subsets from the pool such that no elements are covered by
more than three added subset.

The subsets having a reduced cost rc > D<
MP are removed from the

Master Problem, but not from the pool.
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Chapter 8

Search Heuristics for Set
Covering Problems

The main goal of this work is the design of a global constraint for Set Covering
Problems. However, using internal information of most constraints presented
in Section 5.4.1, we can design powerful search heuristics in order to quickly
find good solutions to the constrained Set Covering Problems.

Search heuristics are mandatory because filtering algorithms implemented
in propagators are not sufficient to prune the search space and to find solu-
tions. When all propagators are idle (i.e. they cannot do any more pruning),
we need to branch in order to explore the search tree and to build a solution,
for instance cutting the search tree in two, with one branch i ∈ T and the
second with i /∈ T .

This section aims at presenting such heuristics.

8.1 Search Heuristics in the Litterature

When we use the linear relaxation of the Set Covering Problem in the SC
constraint, one solution is to choose a fractional component of the last com-
puted solution x∗ and to assign it to 0 or to 1 (variable fixing). However this
strategy does not preserve the structure of the Pricing Problem; down in the
search tree several solutions will be forbidden when we fix xi = 0 and the
Pricing Problem will be highly complicated.

An improved branching strategy consists in fixing several fractional val-
ues at once. For instance in [GSMD99], they fix at 1 all variables with a
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value greater than 0.6 in the optimal solution of the linear relaxation. This
branching strategy seems to work when we want a fast solution, exploring
branches with xi = 1 instead of branches with xi = 0.

There exists another solution when the Master Problem has a set parti-
tionning structure, there exists an efficient branching rule [FR76]. It is based
on the observation that for two given elements e and f , in a solution to MP,
either they belong to the same subset or they don’t. So we can choose two
non-integral variables λe and λf and impose that e ∈ Si ⇐⇒ f ∈ Si or
e /∈ Si ⇐⇒ f ∈ Si.

Otherwise, the most efficient branching schemes take care of the structure
of the problem.

8.1.1 Search Heuristics for the VRP

For the VRP, branching schemes can be roughly subdivided into two cat-
egories: branchings based on routing decisions and the ones based on as-
signment decisions. The firsts modify the way one vehicle serves different
requests. The seconds modifies the way requests are handled by which vehi-
cles.

A routing branching scheme is presented in [DY91]. Let xr be a fractional
component of the solution of the LP Master Problem and let i1, . . . , in the
requests served by route r with request i served right before request i+1. Let
Oij = 1 if request j is served right after request i and Oij = 0 otherwise. We
can cut the search tree into n+2 branches. The ith branch would correspond
to O01 = O12 = . . . = Oi−1 i = 1 and Oi i+1 = 0.

A branching strategy based on assignment decision is presented in [DY91].
It is based on the following proposition.

Proposition 11 Let x∗ be the optimal solution of the LP relaxation of
the VRP. Define Ωk to be the set of routes served by vehicle k and δr

i = 1
if and only if route r serves request i. Define also zi

r =
∑

rΩk
δk
i x

k
r .

Then x∗ is integral if and only if z is integral.

Proof see [SS].

The branching strategy selects one variable such that 0 < xk
r < 1 and a

request i such that zi
k is not integral. Two branches are created: one with

zi
k = 0 and one with zi

k = 1.
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Another branching scheme for the CAP [FJK+02] build a route by adding
requests that contributes the lowest value to the path cost.

Iterative search strategy are proposed in [Sha98, BFS+00, TLZO01].
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Part IV

Experimental framework
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Chapter 9

A Gecode implementation

In order to validate our different ideas, we implemented them in the GEneric
COnstraint DEvelopment environment [gec]. We chose this framework be-
cause it seems to be the most efficient CP solver that is freely distributed,
making it easy to extend.

In this chapter we will briefly describe how we implemented global con-
straints presented in Section 5.4.1 and in Section 6 and how we implemented
the column generation process described in Section 7.5.

9.1 Implementation of the global constraints

Global constraints as 2SC, SCL and MD were implemented as propagators
in Gecode. The aim of a propagator is to consider a small subset of all
variables in a CSP and to prune their domain by removing elements that
are not part of any solution. All the three propagators 2SC, SCL and MD
have the same structure, they consider an Finitie Domain variable and a Set
variable. The former one represents the cost of a cover, and the second one
contains all indices of the subsets being part of this cover. As explained in
Section 5.1, these propagators compute a lower bound lbSC ≤ SC∗ and use
it to prune the domain on N . A shaving process is used to prune T .

9.1.1 Common Structure of the Propagators

This main structure is implemented in the file SCRel.cpp (see appendices).
It has the structure of a Gecode propagator. The philosophy of Gecode is
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to copy everything when one creates a computational space. This can be
too time-consuming if the propagators contain a lot of information. This is
the case for us; we need to store a lot of information in order to solve the
2SC or SCL∗ lower bounds efficiently. Thus we decided to create a class
representing a relaxation of SC that store all this information. Instead of
being copied, it is updated when needed to reflect changes in spaces. This
class can be accessed through a pointer (relax).

When we need to propagate, we need to achieve the following steps: up-
date of the data structures (update), compute a lower bound on N (computeLB)
and prune the domain of T by shaving (shave). Algorithms implemented in
SCRel are the ones described in Section 5.1. In order to be used with the
propagator SCRel, the different relaxations must provide

build(): A function that is called at the creation of the propagator that
builds up the relaxation (initialization of data structures)

makesure (resp. makeremoved, makeunknown) : functions that update the
data structures to reflect that a subset must (resp. cannot, may) be
part of the cover.

computeLB(): A function that compute the lower bound lbSC and returns
a negative result if the relaxation of SC has no solution (i.e. SC would
not have any solution too).

getOptimal(): returns the lower bound computed by computeLB().

In the following sections, we present the implementation of three relax-
ation of SC: 2SC, SCL∗ and MD. We describe them in terms of the functions
enumerated above.

9.1.2 Implementation of 2SC

We describe some implementation details of the algorithm Algorithm 6.1.

Data Structures

The bipartite graph is stored in a special data-structure in order to allow fast
incremental changes in its structure and efficient algorithmic design.
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No special data structures are used to store information about the nodes
of the graph. One object edge represents an edge and contains all the infor-
mation we may need about it. In particular it stores its cost, its endnodes and
some values needed to compute the subgradient algorithm for Lagrangean
relaxation. For each nodes i, there exist four linked lists containing edges in-
cident to i. The first contains all free edges (edge being not part of the cover),
the second contains edges that are in the cover. The third and fourth linked
list contain the edges that must be part of the cover and the ones that cannot
be part of it respectively. We store these two last kinds of edges instead of
erasing them because as told in Section 9.1.1 we use only one data structure
for the entire search tree. Thus the edges that are in SURE or REMOV ED
could be reinserted as unknown when we explore other branches of the tree.

The four linked lists per node are encoded directly in edge: each edge
contains a pointer to the previous and the next edge in the linked list. In this
way, once the algorithm has an edge in hand it can remove it and re-insert
it in the different linked list in O(1). This allows to efficiently augment the
current cover with a given admissible path.

The main operation in Algorithm 6.1 that cannot be achieved in optimal
time-complexity is the retrieval of the edge incident to a given node i of
minimum cost. We tried to store edges in both linked lists and priority
queues, that should allow a logarithmic-time retrieval of the edge of minimum
cost. However from our experience the additional cost needed to maintain
the priority queue is not worth its benefits.

build()

This function initializes the data structures used by the algorithm. There are
two main objectives here. First we need to build the graph in itself. Second
we need to build an initial edge cover in order to make the algorithm invariant
(i)-(v) holding (see Section 6.1). The first part is pretty easy. There are two
options for the second objective: either we put all edges in the cover or we
try to put as least edges as we can in the cover. For the first option, we can
set π(i) = max(i,j)∈E cij and the invariant holds. For the second option, for
each node i, we put in the cover one edge of minimal cost and set π(i) to its
cost. We implemented this second option.

makesure makeremoved, makeunknown

The implementation is direct from the algorithm described in Section 6.2.
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computeLB()

The implementation follows the algorithm and its improvements described
in Section 6.2.

getOptimal()

We just can compute the following value and return it

∑

(i,j)∈R

cij

9.1.3 Implementation of SCL

In order to provide a lower bound here, we need to compute the linear relax-
ation of SC i.e.

SC∗ = min
x∈Bn

∑

1≤j≤n

cjxj (SC) (9.1)

subject to
∑

1≤j≤n

aijxj ≥ 1 ∀i ∈ U (9.2)

xj ∈ B ∀j = 1 . . . , n (9.3)

where aij = 1 iff i ∈ Sj . B = {0, 1}.

As explained in Section 3.3, the simplex algorithm is very useful for solv-
ing efficiently linear problem while allowing incremental changes.

Many linear programming solver exists that provides libraries implement-
ing the simplex algorithm. We chose to use lp solve because it is freely
distributed, while being robust and providing an easy API to use in C++
programs.

The following describes how our code use lp solve in order to solve the
linear relaxation of SC. There is nothing special, implementation of this
relaxation is straightforwrd.
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build()

lp solve provides a class lprec for describing a linear problem. We use the
API provided to encode the problem (9.1)-(9.3). Each column represents
a subset, and each row represents an element to cover. Upper and lower
bounds of the variables are set to 1 and 0 respectively.

makesure makeremoved, makeunknown

In order to put a subset Sj in the cover, we set the bounds on the variable
xj to 1. To disallow a subset Sj to be in the cover we set both bounds to 0.
To make unknown we set the lower bound of xj to 0 and its upper bound to
1.

computeLB()

We just call tha API and call the solver: solve(lp).

getOptimal()

We return the optimal value of the linear problem found by lp solve.

Haaa, if implementation could always be as easy...

9.1.4 Implementation of MD

build()

Let n be the number of subsets and m be the number of elements to cover
and N = {1, . . . , n}. As in Section 6.2, we denote the set of the indices
of the subsets that must be in the cover by SURE and the indices of the
subsets that must not be in the cover by REMOV ED. Remember that the
intersection graph is the graph whose nodes are the elements. There is an
edge (i, j) if and only if there is one subset that contains both i and j. We
store the intersection graph GX as an array g of m hashmaps. The keys
of these maps are neighbours of a given node and values are the number of
subsets that contain both elements:

g[i].f ind[j] = g[i][j] = |{k ∈ N \REMOV ED|i ∈ Sk, j ∈ Sk}|
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We also store an array modified of m integers that remembers, for each
element e, how many subsets that must be in the solution contains e:

covered[i] = |{j ∈ Sure | i ∈ Sj}|

We also store two other arrays of n boolean oldglb and oldlub that
gives the greatest lower bound and the lowest upper bound of the variable
T when the current data-structure were built. This allows to update the
data-structure more efficiently: if an index j didn’t move among T , T or T
during two consecutive calls of the propagator, we don’t need to consider it
to update the data-structures.

makesure makeremoved, makeunknown

These functions are direct implementation that maintain the class invariant
described in the above section.

computeLB()

In order to compute a independent set S of the intersection graph GX , we
store all nodes in a priority queues that store them in increasing degree.
Until there are nodes in the priority queue, we take the node i with mini-
mum degree, put it in S, remove all its neighbours from the priority queues
and update the degree of all neighbours of the neighbours of i by mean of
a decreaseKey function provided by the priority queue. This allows to effi-
ciently find a independent set of the graph

getOptimal()

We just need to return the number of elements inserted in S.

9.2 Implementation of Column Generation

9.2.1 Main Structure of the Implementation

This section describes our implementation of the approach presented in Section 7.5
to handle very large-scale SC problems. The big picture of the main concepts
is illustrated in Fig.9.1.
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SCRel is presented above in Section 9.1.1. It uses SCColGen which con-
tains the main definition of the new relaxation (e.g. how to compute the
lower bound on SC, how update the internal structure). SetsCollection is
a class that defines a collection of subsets. This collection is the collection
X used in Section 5.1. The difference is that X has now a huge size, that
makes it impossible to store all the subsets in memory. LP solve is an ex-
ternal library used to solve the reduced problem by the simplex algorithm.
It was already used in Section 9.1.3 to compute the linear relaxation of SC.
ColGen is a class that aims at making the link between the columns in the LP
formulation used by LP solve and the entire collection. Because X can be
very huge, all subsets generated are not automatically stored in LP in order
to speed up the simplex algorithm. ColGen aims at enumerating all subsets
generated and at providing the index of a given subset as well at retrieving a
subset of a given index. SubsetBuilder is a user-class that define the collec-
tion X, i.e. which subsets belongs to X. CSPSubset and CSPHeuristic are
two classes that define respectively the CSP of finding the subset of minimum
reduced cost and the one used to find subsets of negative reduced costs by a
heuristic. BranchingComplete, BranchingHeuristic and BranchingClose

defines search strategies used in order to solve these two CSP’s.

In the following each class is presented in more details.

9.2.2 Storing the Collection of Subsets

We saw in Section 5.1 that a cover R is defined as the set T of the indices
of the subsets being part of the cover. This implies that there is a bijection
between the indices and the subsets. Thus we must be able to retrive a subset
form its index and vice-versa.

From an implementation point of view, subsets are stored in a vector

data-structures (i.e. an array) in the order they are found by the column
generation process. This allows to easily retrieve a subset from a given index.
A hashmap is used in order to implement the function 2U → Z that retrieve
the index of a given subset, or to determine that this subset has not been
found yet. Two subsets are equal if they contain the same set of elements
and their costs are equal. We use the following hash function

hash(S) =
∑

e∈S

2 e mod 32
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9.2.3 Storing the Reduced Subproblem

As in section Section 9.1.3 we use the external library LP solve to solve linear
optimisation problem by the simplex algorithm. Because the collection X of
subsets can be very huge, the LP problem that we solve with LP solve does
not contain all columns. ColGen aims at making the link between columns
in the LP problem and subsets in the collection X. This is not a big class.
LP solve allows to give a name at each row and each column of the LP
problem. Thus a column that will represents the subset Si will be named
“i”. Now making the link between columns in LP and indices of subsets can
easily be done by using functions provided by LP solve.

9.2.4 Easy Specification of the Collection of Subsets

Recall that the main objective of the column generation approach is to offer
the user a general framework to help him specifying very large-scale SC
problems and to offer already implemented parts of this framework. However
some parts are specific to the problem to solve and must be implemented by
the user. Classes as SubsetBuilder contains all the unknowns of the problem
and must be written by the user.

SubsetBuilder defines the collection X by a CSP. Indeed, as we saw
before, X will be the collection of the subsets being solution of the CSP
defined by the user. The user must then

1. define the variable of the CSP: functions init and update.

2. specify all the constraints on the variables of the CSP: functions constrain.

3. give some information about the structure of the CSP: insCost and
modifyElementWeight.

4. Explain how to ensure that a set of elements is a solution to the CSP:
postLastBranching

The following discusses all these functions more in depth. An example of
such class is given in Section 9.3.

Defining the Variables of the CSP

All CSP’s contains variables whose domains are constrained. These variables
will be instance variables of the SubsetBuilder class.
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The function init() creates and initialises all variables. It specifies the
domains for each of them.

The function update(SubsetBuilder) allows to update the variables.
This is needed from the architecture of the CP engine Gecode. It allows to
clone variables when we copy computation spaces.

Constraining the variables

A unique function constrain ( SetVar S, IntVar RC) allows to post con-
straints on the variables of the CSP. Furthermore parameters S and RC rep-
resent the subset that will be added to the collection (when a solution to
the CSP is found) and the reduced cost of this subset. Thus the user must
constrain these two variables in order that RC is exactly the reduced cost of
S. Passing these parameters allow the user to constrain (i.e. to define) these
two values.

Structure of the Problem

In order to use our global constraint the user needs to specify additional
information about the problem. First he needs to specify how we can compute
the insertion cost defined in Section 7.5.3. Given a subset and an element,
the function insCost(S,e) of the class SubsetBuilder should return I(e, S).

Second, the framework will use the function modifyElementWeight to
change the problem in order to reflect changes in dual values. Remember
that the RC parameters of the constrain function must be the reduced cost
of variable S. modifyElementWeight is used to pass dual values to the class
SubsetBuilder.

Third the user should specify how to build a first feasible solution to the
problem of finding a cover. The Column Generation process needs a feasible
solution to obtain valid dual values. The user must then provide a way of
computing one cover of U such that each subset in this cover belongs to the
collection X.

Ensuring that we have a solution

Once we have determined the set variable S, we must verify that it is a valid
subset for X. Imagine X is defined as the set of nodes of a graph G respecting
some constraints. A graph is assigned once we have assigned the set of nodes
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and the set of edges. Thus if we have assigned S to a given value, we are
not sure that S is a valid subset, because there could be no set of edges E
such that G = (S, E) is a graph repspecting all the constraints. The user
must then provide a Branching to assign all variables initialised in the init

function. Once all variables are assigned, then we are sure that S is a valid
subset and we can add it to the collection.

The Branching is specified in the function postLastBranching. As indi-
cated by its name, this function posts Branchings that will be called after all
others, allowing to assign all variables not assigned yet.

9.2.5 The Relaxation Class

At the upper level, the global constraint using column generation is im-
plemented as all the other propagators presented in Section 9.1. SCColGen

provides functions needed by SCRel in order to prune the domains of N and
T . Its build function initialises the LP problem with columns created by the
buildFeasibleSolution provided by the user and computes the first pri-
mal/dual optimal solution. The makeSure, makeRemoved and makeUnknown

are similar to the one of the implementation of the SCL∗ relaxation. We fix
both the lower and the upper bounds of the variables.

The getOptimum function returns the lower bound if the precedent call
to computeLB found one minimum reduced cost.

The computeLB function is a direct implementation of Algorithm 7.1. The
heuristic and the optimal search for subsets with negative reduced cost are
described below.

9.2.6 Optimal Solution for the Pricing SubProblem

The implementation for the search of the subset of minimum reduced cost is
pretty straightforward. We wrote a class CSPSubset that define a CSP with
a variable S and an integer variable RC. RC is constrained to be negative.
This class also uses the function constrain provided to the user to post
all constrain on S and RC. Then we use a Branch and Bound search engine
(implemented in Gecode) in order to find the subset of minimum reduced
cost.

The generic branching strategy implemented begins with the empty sub-
set and add elements with negative insertion cost wrt the current subset until
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no more such elements exists. This branching strategy must be complete be-
cause we cannot miss the subset with minimum reduced cost. Thus if there
is an element with negative reduced cost, we divide the search tree in two.
The first branch puts the element in the lower bound of S, and the second
removes it from the upper bound of S. If the element has positive reduced
cost, we remove it from the upper bound in the first branch and put it in the
lower bound in the second.

9.2.7 Heuristic

Main structure

As explained in Section 7.5 we selects from the LP problem all subsets with
zero-reduced costs. We select elements to remove with a direct implemen-
tation of Algorithm 7.3. Values |K(e, f)|, κ(e, f) and κtot, needed for this
algorithm, are stored as invariants in the class SetsCollection.

Let E be the set of removed elements and S1, S2, . . . , Sn be the selected
subsets with zero-reduced cost. In order to compute the heuristic, we create a
CSP with n set variables Sv1, . . . , Svn and n associated finite domain variable
Cv1, . . . , Cvn representing the cost of the subset Svi. For each variable we
set an initial domain Svi = Si \ E and Svi = U . This is done in the class
CSPHeuristic.

The branching strategy is a direct implementation of Algorithm 7.4; it
tries to put elements from E in the different set variables Svi depending on
the insertion costs. This is implemented in BranchingHeuristic.

BranchingHeuristic does not assign set variables; it only puts elements
in the lower bound of the set variables but never remove elements from its
upper bound. Because propagators may not be arc-consistent, we need to
assign set variables in order to verify that the current greatest lower bounds of
the set variables represent a solution. To meet this objective, we implemented
a special branching, BranchingClosing. The most direct implementation to
assign a set variable would be to divide the search tree into two until there
is an element e that is in Svi \ Svi. In the first branch we have e /∈ Svi and
in the second e ∈ Svi. However this is not the most efficient implementation
because each time we divide the search tree, Gecode calls all propagators
and perform some other tasks. Moreover, for most problems, we expect that
we should not fail; if S is a solution then the probability is high that s is
a solution too for s ⊆ S. Thus we implemented the following strategy in
BranchingClosing. We divide the search tree in three branches. In the first
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we assign Svi: Svi ← Svi. If this branch fails then we select the element

e ∈ Svi that has the minimum insertion cost and in the second we post
e ∈ Svi and in the third we post e /∈ Svi. Usually the first branch does not
fail. This allows to find a solution very quickly.

In order to constrain the problem of finding a valid subset, the user may
have declared other variables. Still because some propagators may be not
achieve arc-consistency, we must assign them. After BranchingClosing,
we branch according to the branchings posted by the postLastBranching

function provided by the user. When it stops, we know we have a solution
that can be added to our set collection.

The solutions of the CSP described above can be explored in different
ways. Either we stop exploring when we find the first solution, or we decide
to explore the search tree by branch-and-bound. The first choice has the
advantage of finding many different subsets quickly. However we could find
subsets with better reduced cost with the second choice. When using branch-
and-bound we add the constrain

Cvi < Cvold
i

for all i ∈ {1, . . . , n}. Cvold
i is the cost of the ith subset of the solution

just found. The experimental sction 10.2 will xompare the efficiency of this
heuristic with and without branch-and-bound.

Algorithmic improvements

In the previous paragraphs we described the main structure of our implemen-
tation of the heuristic. However some algorithmic improvements are needed
in order to find subsets more quickly.

No useless branching First, we should observe that when we use a branch-
and-bound scheme, we don’t expect to find better solution when we insert
more elements in a subset that is already a solution. Thus when we have
found a solution, we don’t want to explore branches defined by Branching-

Closing. In order to do that, we added two instance variables: one integer
meDone and one pointer *done to an integer that is shared by all instances
of BranchingClosing (this pointer can be seen as a kind of static vari-
able). We increase the value pointed by done by one every time we quit
BranchingClosing (i.e. when BranchingClosing has nothing more to do).
When a instance of BranchingClosing is created, we set meDone = *done.
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In the commit function, when we need to post constraint to explore the right
branch, we check whether *done > meDone. If true, this means that we
found a solution in the left branch and instead of exploring the right branch,
we fail.

Initialization overhead We observed that the search engine implemented
by Gecode is slow during initialization. The reason is that it must initialize
data-structures and the propagators and to achieve a first propagation. Thus
it is not a good idea to create a new CSP with a bunch of new propagators
every time we have selected elements to remove. A more efficient way to
do this is to choose which elements to remove in a branching. This would
allow to create search engines and CSP’s only once. The resulting branching
implementation is more complex, but it is worth doing it.

Branching on useful subsets Imagine that we decided to remove 3 ele-
ments from a set of 50 subsets with zero-reduced cost. Then, our heuristic
will re-insert these 3 elements into some of the 50 subsets obtained by re-
moving the selected elements. Thus at most 3 subsets will be new. It is
a waste of time to use BranchingClosing and the branchings defined in
postLastBranching on the 47 other subsets as we already know they are
solutions.

We put a boolean array modified with n records in CSPHeuristic. Ini-
tially all these records are set to false. When our BranchingHeuristic

re-inserts one elements into Svi, we set modified[1] record of this array to
true. Then BranchingClosing and the branchings posted in postLastBranching

check the values of the modified array depending on the variables they are
operating on. If the given record is set to false, they know it is not worth
to branch as we know which solution we will get in the end, and the current
branching is skipped.

Delaying propagators Sometimes, propagators posted by the user with
the provided constrain function are heavy (one such exemple is given with
the VRP where we need to post propagators on graphs). With the same
argument than in the precedent paragraph, it is not worth posting 50 sets
of propagators if only 3 of them will be useful. Thus we decided to call the
constrain to post propagators on Svi in BranchingHeuristic, the first time
we insert an element into a Svi. Thus we post propagators when decision
about inserting an element in a given subset is already taken. Of course one
could argue that posting all propagators at the beginning is useful because it
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prunes the domains of the Svi and then there could be subsets in which we
know we cannot insert a given element. However, computational experiense
shows that this possible pruning is not worth the waste of time we encounter
by copying propagators all along the search tree.

9.3 Application: Vehicle Routing Problem

This section gives an example of an application of the Column Generation
approach. It also gives an example on how we can use our implementation
to solve such large-scale set covering problems.

9.3.1 CP formulation of VRP

We define a route by a sequence containing all the requests it serves: R =
[R1, R2, . . . , Rk].

A very useful and efficient way to model routes is to define them as paths
in a graph G = (V, E). The set of nodes V would represent all client’s
location and all depots. The set of edges E would contain an edge (li, lj) if it
is possible for a vehicle to go from location li to location lj . Several weights
can be assigned to one edge. These could represent costs to travel between
two locations (cij), distances (dij) or time needed to drive this distance (tij).
Several weights can be assigned to nodes v too representing in particular
clients’ demand (dv), time to unload it (uv) and clients’ returns (rv).

Thus a route is a graph variable P such that

path(P, 0, 0)

i.e. a path from the depot (node 0) and returning to the depot. These
routes should meet some constraints depending on the kind of VRP we need
to solve.

Capacitated VRP (CPRV) All vehicles have a maximal capacity that
cannot be exceeded by the items it must serve to clients. If we denote by
Q the total capacity of a vehicle, then we have the additional constraint

∑

i∈nodes(R)

di ≤ Q
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VRP with Pick-up and Delivering (VRPPD) In this particular case,
clients may return some commodities that must be carried by the ve-
hicle.

j
∑

i=1

rRi
+

k
∑

i=j+1

dRi
≤ Q ∀j = 0, . . . , k

...

A solution to VRP consists in finding which routes allows to serve all
requests exactly once, i.e. we should solve a set partitionning problem with
collection X. However because Ri ⊆ Rj ⇒ Cost(Ri) ≤ Cost(Rj), each
optimal set covering on X will be a set partitionning. Thus the solution of
VRP should repect the constraint

SC(N, T, X, Cost)

Additional side constraints could be specified on the set of routes chosen
to cover all requests.
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GECODE
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makesure
makeunknown
makeremoved
computeLB
getOptimal

SCRel
post
propagate
shave
update

CSPHeuristic
inherits Space

inherits Space

BranchingHeuristic

inherits Space

BranchingClose

CSPSubset
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insertSubset
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Figure 9.1: Main Concepts behind the Implementation of the Column Gen-
eration Approach
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Chapter 10

Experiments

10.1 Comparison of the different propagators

From the computational results presented in [BHH+05], we observe that TA
and OI achieve far less pruning than the two other methods (MD and SCL∗)
for the same computational cost than MD. Thus we decided to compare 2SC
with SCL∗ and MD. Results are presented in Table-10.3.

We generated random set covering problems by specifying four different
parameters

M The number of elements to cover

N The number of subsets in the collection X

S− The minimum cardinality of the subsets in the collection X

S+ The maximum cardinality of the subsets in the collection X

Then we created set covering problems with the following inputs:

• U = {1, . . . , M}

• X = {S1, . . . , SN}, Si ⊆ U(1 ≤ i ≤ N) is a collection of randomly
generated subsets of U

• Cost(Si) = 1(1 ≤ i ≤ 1)
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We set all costs to 1 in order to be able to use MD and to compare
it with the other method. We tested a CSP with only one SC constraint
SC(N, T,U , X, Cost) and try to find the optimal value N (thus computing
SC∗) by branch and bound. The three relaxations were used: 2SC, SCL∗

and MD. A naive branching strategy was used; it branches on S1, S2, . . .,
always in this order. This is not efficient at all to solve set covering prob-
lems, but it allows to be sure that the three different propagators explore
the search tree in the same manner. This removes any interaction between
propagators and the search strategy that could lead to ambiguous results.
Problems with at least one element not covered by any subset were deleted
from the table, because they are not interesting for the comparison. These
three relaxations were implemented as propagators in Gecode [gec]. The
SCL∗ propagator used the library lp solve 5.5 [lps] to solve the linear relax-
ation. This library implements the simplex algorithm which allows incremen-
tal propagation along the search tree. Because these problems are pure set
covering problems (without any side constraints), all methods perform worse
when the shaving process is enabled. So we disabled the shaving in order to
be more fair when comparing all methods. However, when there are a lot of
side constraints, propagators with small time per call should be advantaged
(MD and 2SC).

Neither method outperforms uniformly the two others. However some
general observations can be observed. MD performs usualy better when the
value M

N
is small. This could be explained by the fact that such problems

have a lot of solutions. Then there is less pruning to do and because MD
is faster to compute the lower bound (even of worse quality), it can explore
more solutions.

On the other hand, SCL∗ performs much better when this value is higher
(M

N
≥ 1). In such problems there are less solutions and the good quality of

the lower bound computed by SCL∗ is worth its computational cost.

2SC seems to be situated between MD and SCL∗. When MD performs
best, 2SC usually achieves a better performance than SCL∗. In the opposite,
when SCL∗ performs best, 2SC is often better than MD. This is due to
the fact that for 2SC, we relax more the original set covering problem than
for SCL∗. But MD is even more relaxed. Its computational cost is also
situated between both of them. 2SC seems to be more stable in function
of the input problem. Because 2SC decomposes each subsets in 2-sets, 2SC
performs better when the sizes of the subsets are small.

The advantage of the incremental behaviour of the algorithm 2SC is
demonstrated by Table-10.3 where we can observe that the overall time per
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call to the propagator 2SC is often smaller than the one for the SCL∗ prop-
agator which is also incremental.

10.2 Analysis on the Parameters of the Heuris-

tic

The heuristic presented in Section 7.5.3 requires the settings of some param-
eters. This section analyses the influence of each parameters on the efficiency
of the heuristic. We selected a set of real-life instances of Vehicle Routing
Problems with Pickup and Deliveries with Time-Windows (VRPPDTW).
We implemented this problem being respectful of the framework described
in Section 7.5 as presented in Section 9.2.4. Thus this provides experimental
results that can validate the concepts of our heuristic.

Problems were selected from the ones provided in [vrp]. They provides
VRPPDTW fo a size 200. Their size was decreased to 50 because first ex-
perimental experiences show that this size is big enough to show the main
important facts about the analysis of the parameters of our heuristic. VRP-
PDTW was selected because it is a real-life problems, that arises often in
practice, perhaps more than the standard Vehicle Routing Problem. The
pickup constraints were not implemented.

In order to do experiments on a wise range of values for all the parameters,
first we did some experiments with random parameters. We selected the pairs
parameter-value (p, v) that seemed to lead to the best results independently
of the values of the other parameters. Then for each parameter pt, we tried
the heuristic with different values for pt and we set all the other parameters
po to the best value identified in the previous step.

Results are showed in Fig.A.1 to Fig.A.5 in Appendix A. They reveal
interesting points for the design of the heuristic that would need more inves-
tigation.

Parameter TS Fig.A.2 shows that stopping search early in the heuristic
is useful, even if we search for only one solution. This seems to be the case
because some choices of the elements to remove could increase the difficulty
of finding subsets of negative reduced costs. Perhaps a smaller value of 2000
could be more advantegeous. However, as it is illustrated in the first subfigure
of Fig.A.2, a too small value for TS can be unable the finding fo a solution.
Adding a rule that increase the TS parameter after some iterations if we
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M N S− S+ 2SC SCL∗ MD

Sol Time failures TC Sol Time failures TC Sol Time failures TC

10 500 2 6 223 ¿ 30 38342 0,38 222 ¿ 30 38760 0,37 2 12,4 263731 0,02
10 500 2 10 303 ¿ 30 19418 0,73 235 ¿ 30 35103 0,41 1 8,46 127222 0,03
10 200 2 6 2 4,09 19507 0,1 2 7,46 19507 0,18 2 1,66 45025 0,02
10 200 2 10 1 6,42 19703 0,16 1 8,11 19703 0,2 1 1,18 20875 0,03
20 200 2 4 5 6,83 55259 0,06 5 10,16 18946 0,26 9 ¿ 30 771069 0,02
20 200 2 6 4 4,5 21706 0,1 4 10,4 19132 0,26 5 ¿ 30 619822 0,02
20 200 2 10 3 8,64 22412 0,19 3 9,64 19317 0,24 3 ¿ 30 398993 0,04
20 200 4 14 2 12,78 19507 0,32 2 12,28 19507 0,3 2 8,97 49310 0,09
20 200 8 10 3 15,27 25454 0,29 3 9,57 19407 0,24 3 ¿ 30 266804 0,05
20 200 8 14 2 16,11 20092 0,39 2 10,33 19507 0,25 2 13,13 102288 0,06
50 500 2 4 141 ¿ 30 64416 0,23 228 ¿ 30 37053 0,39 39 ¿ 30 551144 0,03
50 500 2 6 233 ¿ 30 35513 0,41 236 ¿ 30 34842 0,42 28 ¿ 30 446423 0,03
50 500 2 10 314 ¿ 30 17205 0,82 242 ¿ 30 33228 0,44 19 ¿ 30 318013 0,05
50 500 4 14 370 ¿ 30 8405 1,62 260 ¿ 30 28770 0,5 12 ¿ 30 226824 0,07
50 500 8 10 365 ¿ 30 9062 1,51 266 ¿ 30 27381 0,53 15 ¿ 30 212295 0,07
50 500 8 14 388 ¿ 30 6259 2,12 266 ¿ 30 27442 0,52 11 ¿ 30 174868 0,08
10 50 2 6 2 0,1 1132 0,04 2 0,25 1132 0,1 2 0,1 3153 0,01
10 50 2 10 1 0,14 1178 0,05 1 0,26 1178 0,1 1 0,09 1446 0,03

100 500 2 4 138 ¿ 30 67100 0,22 236 ¿ 30 34938 0,41 199 ¿ 30 511838 0,03
100 500 2 6 231 ¿ 30 36210 0,4 244 ¿ 30 32772 0,44 104 ¿ 30 382419 0,04
100 500 2 10 312 ¿ 30 17646 0,8 254 ¿ 30 30312 0,48 94 ¿ 30 269540 0,05
100 500 4 14 372 ¿ 30 8227 1,65 269 ¿ 30 26604 0,54 45 ¿ 30 167095 0,09
100 500 8 10 364 ¿ 30 9201 1,49 268 ¿ 30 26897 0,53 62 ¿ 30 176621 0,08
100 500 8 14 388 ¿ 30 6257 2,12 277 ¿ 30 24780 0,58 42 ¿ 30 153117 0,1
50 200 2 4 24 ¿ 30 291570 0,05 15 13,29 18405 0,35 36 ¿ 30 749486 0,02
50 200 2 6 22 ¿ 30 215045 0,07 11 22,75 20429 0,54 24 ¿ 30 500720 0,03
50 200 2 10 11 ¿ 30 126201 0,12 7 12,53 19119 0,32 15 ¿ 30 393054 0,04
50 200 4 14 7 ¿ 30 58297 0,25 6 25,2 21042 0,58 10 ¿ 30 203992 0,07
50 200 8 10 10 ¿ 30 62392 0,23 7 ¿ 30 20723 0,7 12 ¿ 30 243080 0,06
50 200 8 14 7 ¿ 30 49796 0,29 6 ¿ 30 20909 0,69 8 ¿ 30 159690 0,09

400 1000 2 4 791 ¿ 30 21935 0,64 862 ¿ 30 9544 1,38 980 ¿ 30 117592 0,1
400 1000 2 6 836 ¿ 30 13515 1 876 ¿ 30 7743 1,66 964 ¿ 30 128167 0,09
400 1000 2 10 885 ¿ 30 6651 1,88 885 ¿ 30 6640 1,89 958 ¿ 30 88089 0,14
400 1000 4 14 920 ¿ 30 3179 3,41 897 ¿ 30 5277 2,29 930 ¿ 30 61146 0,22
400 1000 8 10 918 ¿ 30 3330 3,3 913 ¿ 30 3769 3 940 ¿ 30 64338 0,2
400 1000 8 14 936 ¿ 30 2029 4,69 906 ¿ 30 4393 2,66 934 ¿ 30 49467 0,27
400 500 2 10 385 ¿ 30 15628 0,82 318 ¿ 30 16981 0,84 462 ¿ 30 121025 0,1
400 500 4 14 368 ¿ 30 8755 1,56 325 ¿ 30 15231 0,93 462 ¿ 30 89955 0,14
400 500 8 10 364 ¿ 30 9265 1,48 336 ¿ 30 13385 1,05 463 ¿ 30 73104 0,17
400 500 8 14 389 ¿ 30 6164 2,15 340 ¿ 30 12844 1,09 446 ¿ 30 55121 0,23
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M N S− S+ 2SC SCL∗ MD

Sol Time failures TC Sol Time failures TC Sol Time failures TC

50 50 2 6 15 ¿ 30 321407 0,04 14 0,28 732 0,17 21 ¿ 30 473335 0,02
50 50 2 10 10 ¿ 30 218047 0,06 9 0,37 891 0,18 12 ¿ 30 272193 0,04
50 50 4 14 6 ¿ 30 110772 0,12 6 0,41 997 0,18 8 ¿ 30 183474 0,06
50 50 8 10 8 ¿ 30 154642 0,09 8 0,59 965 0,26 10 ¿ 30 201884 0,06
50 50 8 14 7 ¿ 30 129238 0,11 6 0,61 1044 0,25 7 ¿ 30 143366 0,08

200 200 4 14 90 ¿ 30 33609 0,42 36 ¿ 30 15550 0,93 138 ¿ 30 91178 0,15
200 200 8 14 73 ¿ 30 30358 0,47 33 ¿ 30 15642 0,93 84 ¿ 30 89203 0,16
100 50 4 14 25 ¿ 30 94787 0,11 17 0,41 686 0,27 23 ¿ 30 130224 0,09
100 50 8 14 25 ¿ 30 88691 0,12 16 0,53 757 0,31 29 ¿ 30 95007 0,11
400 200 8 14 162 ¿ 30 13554 0,75 74 ¿ 30 10405 1,39 171 ¿ 30 65742 0,18
50 20 4 14 7 0,08 471 0,06 7 0,04 98 0,15 7 0,14 775 0,06
50 20 8 10 9 0,42 2956 0,05 9 0,03 86 0,13 9 1,42 9487 0,06
50 20 8 14 7 0,47 2567 0,07 7 0,05 106 0,18 7 2,25 9991 0,08

Table 10.3: Experimental results. M is the number of elements to cover(i.e. the cardinality of U). N is the size
of the collection of subsets of U . S+ (resp. S−) is the maximum cardinality of subsets Si (resp. the minimum
cardinality of Si). Sol is the smallest solution found for N . T ime is the total search time (search + propagation).
A 30 seconds limit was used. failures is the number of times the algorithm failed during search. TC is the time
per call of the propagator in milliseconds.
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don’t find any solution could be very useful not to encounter this problem.

Parameter D For the parameter D specifying the level on randomness in
the step of removing elements from the current cover, the best value seems
to be 20 as indicated in [Sha98].

Parameter ITR Fig.A.3 shows that beginning by removing four elements
from the current solution seems the best choice. One should note that the
time after which we stopped each iteration of the heuristic is function of the
ITR parameter. This is due to the fact that removing more values enlarge
the neighborhood and we some more time to initialize all data-structure in
the CP engine. More extensive analysis would analyse these two parameters
more separatedly. One more qualitative sign that 4 is a good value for ITR
is the fact that the curve is not convex on three figures, although this does
not happen with smaller values. I interpret that as the fact that we are
at the border between a too small value that explore the search space to
slowly (thus giving a smooth convex amelioration curve) and a too big value
that explore a too big search space, thus finding good values during the first
iterations and not having the time to find a subset of negative cost for the
next iterations.

Parameter MA Big values for the maximum number of added subsets
before recomputing optimal dual values seems better than assigning small
values for this parameter. This could come from the fact that we explore a
larger search space before solving the new Master Problem, thus allowing the
algorithm to generate more diversified subsets. From the curves illustrated
in Fig.A.4 we deduce than we should do more experiences with bigger values
than 20.

Parameter MT Experimental results inllustrated in Fig.A.5 show that the
number of iterations after which we change the number of removed elements
does not seem to impact performance of the heuristic. One interesting ob-
servation is that the decrement in the number of elements to remove seems
to happen more or less at the same time, independently of the value of MT

With or without branch-and-bound ? We did tests to determine whether
using branch-and-boud instead of stopping after the first solution found is
useful. Fig.A.6 and Fig.A.7 show the efficiency of the heuristic without and
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with branch-and-bound. Not using branch-and-bound leads to better solu-
tions. This is illustrated too in the fact that stopping search early when using
branch-and-bound is more efficient than searching more.
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Part V

Conclusion
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Chapter 11

Conclusion

This work explored two research directions to solve set covering problems in
a CP framework, focusing mainly on the integration of operational research
and constraint programming.

In the first part of this work, we have analysed the structure of the set
covering problem and have proposed a generic global constraint approach to
solve it. The proposed approach requires a lower bound on the optimal cost
of a cover. After having presented a number of lower bounds found in the
litterature, we have introduced a new lower bound obtained by relaxing a set
covering problem to an edge covering problem, leading to specific benefits in
particular SCP’s.

The first main contribution of this work, the 2SC relaxation, its incre-
mental algorithm and its implementation were accepted and presented at the
conference Journées Françaises de la Programmation par Contraintes (JFPC
- Paris, June 2007). We consider that we have achieved our objectives for this
part: problem analysis, extensive survey of the existing litterature, proposal
of a relevant solution with theoretical justification, efficient implementation
of the idea and validation by experimental results.

This part of the research work has been finalized by end of February with
the preparation and submission of a paper to the JFPC conference. The
second part of this work consists in a first step of the extension of the generic
SC constraint, allowing to handle very large set covering problems whose
collection of subsets is too big to be considered explicitely.

In the second part, we started by a litterature survey about column gen-
eration. After discussions with Pr Deville and Pr Wolsey, we designed our
initial solution (described in the chapter 7) and started immediately the basic
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implementation of our framework.

We have initiated the validation of the heuristic (initial testing) and de-
velop the final results in this report.

This second part, the integration of column generation to extend our first
version of the SC constraint met our initial objectives about this research
direction: 1) proposal of a flexible framework to integrate heuristics, exact
algorithms and column generation for a CP approach to very large-scale set
covering problems and 2) initial analysis to fine tune the proposed heuristic.

At this stage, our preliminary work could be used as a platform to validate
the research direction taken by enhancing the optimal search of the subsets
with minimum reduced cost. We believe this is the next most difficult and
challenging aspect of this approach. Due to specific time constraints (from
March to May 2007) and to reach preliminary conclusions, we had to limit
our objectives.

For the two parts of the work, we decided on purpose to orient it in a
research way of thinking, not focusing on specific implementation objectives
but more as an exploration work. As a direct consequence, we have decided to
take the limited time available to go as far as we could in the implementation
and validation of our second approach.

What should the reader remember from this work ?

First the introduction of the 2SC relaxation, representing a potential in
the case the collection of subsets contains subsets with very small cardinality.

Second, the structure of the set covering problem is such that the set of
solutions of a set covering problem is not strongly constrained, only trivial
rules exist to prune according to the fact that we want to find a cover. Thus
the pruning can only be done according to the optimization constraint, i.e.
the cover we want to find should have a cost smaller than a given value. This
kind of constraint is very difficult to handle in a pure CP framework. Thus
integration of operational research into CP is useful for such problems.

Third, the column generation approach proposed in this work is a flexible
way to let the user specify some additional structure of the set covering prob-
lem he wants to solve. SC is a generalization of many problems, but we tend
to drop too much structure when relaxing problems into a SCP formulation.
Our framework allows the user to specify this additional structure.

What could be the next challenging activities based on this work ?

Ideally, future work should be directed to continuing the implementa-
tion of the optimal search of subsets with minimum reduced cost and more
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in-depth validation of this approach. At this stage, we anticipate that by
specializing the framework proposed in this work to other problems whose
generalization is SCP could be worth the additional implementation cost to
allow the user to solve specific but well-known problems in a CP framework.

Simple reduction tests could also be applied to reduce the size of the
relaxation to be solved inside our propagator. This would lead to faster
time per call. The challenge is that these reductions should be managed
incrementally to limit the additional constraints posted along the search tree.
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[AÖEOP02] Ravindra K. Ahuja, Özlem Ergun, James B. Orlin, and Abra-
ham P. Punnen, A survey of very large-scale neighborhood search
techniques, Discrete Appl. Math. 123 (2002), no. 1-3, 75–102.

[BCT02] Nicolas Beldiceanu, Mats Carlsson, and Sven Thiel, Cost-filtering
algorithms for the two sides of the sum of weights of distinct val-
ues constraint, Tech. Report 14, Swedish Institute of Computer
Science, 2002, http://www.sics.se/libindex.html#Technical.

[Ber57] Claude Berge, Two theorems in graph theory, Proceedings of the
National Academy of Sciences of the United States of America,
vol. 43-9, 1957, pp. 842–844.

[BFS+00] Bruno De Backer, Vincent Furnon, Paul Shaw, Philip Kilby, and
Patrick Prosser, Solving vehicle routing problems using constraint
programming and metaheuristics, Journal of Heuristics 6 (2000),
no. 4, 501–523.

[BHH+05] C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh, Fil-
tering Algorithms for the NValue Constraint, Proceedings of the
7th International Conference on Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimiza-
tion Problems (CPAIOR-05) (Prague, Czech Republic) (Roman
Barták and Michela Milano, eds.), Lecture Notes in Computer
Science, vol. 3524, Springer-Verlag, May 2005, pp. 79–93.

[BJN+98] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Mar-
tin W. P. Savelsbergh, and Pamela H. Vance, Branch-and-price:

88



Column generation for solving huge integer programs, Operational
Research 46 (1998), no. 3, 316–329.

[BL94] Julien Bramel and David Simchi Levi, On the effectiveness of set
covering formulations for the vehicle routing problem with time
windows, –.

[CFT98] A. Caprara, M. Fischetti, and P. Toth, Algorithms for the set
covering problem, 1998.

[CFT99] Alberto Caprara, Matteo Fischetti, and Paolo Toth, A heuristic
method for the set covering problem, Oper. Res. 47 (1999), no. 5,
730–743.

[CNS97] S. Ceria, P. Nobili, and A. Sassano, Set covering prob-
lem, Annotated Bibliographies in Combinatorial Optimization
(M. Dell’Amico, F. Maffioli, and S. Martello, eds.), John Wiley,
1997.

[DY91] SOUMIS F. DUMAS Y., DESROSIERS J., The pickup and deliv-
ery problem with time windows, European journal of operational
research 54 (1991), 7–22.

[EDM92] Elia El-Darzi and Gautam Mitra, Solution of set-covering and set-
partitioning problems using assignment relaxations, The Journal
of the Operational Research Society 43 (1992), no. 5, 483–493.

[FJK+02] Torsten Fahle, Ulrich Junker, Stefan E. Karisch, Niklas Kohl,
Meinolf Sellmann, and Bo Vaaben, Constraint programming based
column generation for crew assignment, Journal of Heuristics 8
(2002), no. 1, 59–81.

[FR76] B. A. Foster and D. M. Ryan, An integer programming approach
to the vehicle scheduling problem, Operational Research Quarterly
27 (1976), no. 2, 367–384.

[gec] Gecode: Generic constraint development environment, 2005. li-
brary, Available as an open-source from www.gecode.org.

[Ger97] Carmen Gervet, Interval propagation to reason about sets: Defi-
nition and implementation of a practical language, Constraints 1
(1997), no. 3, 191–244.

- 89 -



[GSMD99] Michel Gamache, Francois Soumis, Gerald Marquis, and Jacques
Desrosiers, A column generation approach for large-scale aircrew
rostering problems, Operations Research 47 (1999), no. 2, 247–
263.

[HP93] Karla L. Hoffman and Manfred Padberg, Solving airline crew
scheduling problems by branch-and-cut, Manage. Sci. 39 (1993),
no. 6, 657–682.

[HWC74] Michael Held, Philip Wolfe, and Harlan P. Crowder, Validation
of subgradient optimization, Journal Mathematical Programming
6 (1974), no. 1, 62–88.

[JKK+] Ulrich Junker, Stefan E. Karisch, Niklas Kohl, Bo Vaaben,
Torsten Fahle, and Meinolf Sellmann, A framework for constraint
programming based column generation.

[JL87] J. Jaffar and J.-L. Lassez, Constraint logic programming, POPL
’87: Proceedings of the 14th ACM SIGACT-SIGPLAN sympo-
sium on Principles of programming languages (New York, NY,
USA), ACM Press, 1987, pp. 111–119.

[JM92] Current J and O’Kelly M, Locating emergency warning sirens.,
Decision Sciences 23 (1992), no. 1, 221–234.

[JMSY92] Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C.
Yap, The clp(r) language and system, ACM Trans. Program.
Lang. Syst. 14 (1992), no. 3, 339–395.

[Kar39] W. Karush, Minima of functions of several variables with inequal-
ities as side constraints, Master’s thesis, Dept. of Mathematics,
Univ. of Chicago, Chicago, Illinois, 1939.

[Kar72] Richard M. Karp, Reducibility among combinatorial problems,
Complexity of Computer Computations (R. E. Miller and J. W.
Thatcher, eds.), Plenum Press, 1972, pp. 85–103.

[KT50] H. W. Kuhn and A. W. Tucker, Nonlinear programming, Proceed-
ings of 2nd Berkeley Symposium, Berkeley: University of Califor-
nia Press, 1950, pp. 481–492.

[Kuh55] Harold W. Kuhn, The hungarian method for the assignment prob-
lem, Naval Research Logistic Quarterly 2 (1955), 83–97.

- 90 -



[lps] lp solve library.

[LW79] Nemhauser George L. and Glenn M. Weber, Optimal set partition-
ing, matchings and lagrangian duality, Naval Research Logistics
Quarterly 26 (1979), 553–563.

[LY94] Carsten Lund and Mihalis Yannakakis, On the hardness of ap-
proximating minimization problems, J. ACM 41 (1994), no. 5,
960–981.

[MN99] Kurt Mehlhorn and Stefan Näher, Leda: a platform for combi-
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Figure A.1: Analysis of the impact of parameters: DFILE=test{1-3,5}.vrp,
MA=25, MT=5, MI=60000, ITR=4, MTR=30, INCTR=-1, TS=3500
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Figure A.2: Analysis of the impact of parameters: TSFILE=test{1-3,5}.vrp,
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Figure A.5: Analysis of the impact of parameters: MTFILE=test{1-3,5}.vrp,
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Figure A.6: Analysis of the impact of parameters: TSFILE=test{1-3,5}.vrp,
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Figure A.7: Analysis of the impact of parameters: TSFILE=test{1-3,5}.vrp,
MA=20, MT=10, MI=60000, ITR=4, MTR=30, INCTR=-1, D=20

- 100 -


	Acknowledgments
	Contents
	List of Algorithms
	Introduction
	I Background
	Constraint Programming
	Main Ideas
	Constraint Satisfaction Problem
	Constraint Programming
	Existing CP Engines and Libraries

	Optimisation Theory
	Formulation of linear optimisation problems
	Polyhedral results
	The Simplex Algorithm
	Duality theory
	Integer programming
	Lagrangean relaxation
	Column generation


	II The problem: The set covering problem
	The set covering problem
	A general CP approach to SCP
	The global constraint SC
	Pruning of N
	Pruning of T
	Existing approaches


	III A Global Constraint for the SCP
	A new SC lower bound: 2SC
	Principles
	Incremental algorithm
	Construction of the underlying graph
	Improving 2SC by Lagrangean relaxation

	Handling of large-scale Set Covering Problems
	Needs and challenges
	Formulations of a practical problem (VRP)
	Existing approaches to solve large-scale problems with CP
	Integration of column generation in the SC global constraint
	Our integration of CG and CP

	Search Heuristics for Set Covering Problems
	Search Heuristics in the Litterature


	IV Experimental framework
	A Gecode implementation
	Implementation of the global constraints
	Implementation of Column Generation
	Application: Vehicle Routing Problem

	Experiments
	Comparison of the different propagators
	Analysis on the Parameters of the Heuristic


	V Conclusion
	Conclusion
	Bibliography
	Experiences for Tuning Parameters of the Heuristic


