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ICTEAM, Université Catholique de Louvain (UCLouvain), Belgium,
{cyrille.dejemeppe, pierre.schaus, yves.deville}@uclouvain.be

Abstract. Most of the derivative-free optimization (DFO) algorithms rely on a
comparison function able to compare any pair of points with respect to a black-
box objective function. Recently, new dedicated derivative-free optimization al-
gorithms have emerged to tackle multi-objective optimization problems and pro-
vide a Pareto front approximation to the user. This work aims at reusing single ob-
jective DFO algorithms (such as Nelder-Mead) in the context of multi-objective
optimization. Therefore we introduce a comparison function able to compare a
pair of points in the context of a set of non-dominated points. We describe an
algorithm, MOGEN, which initializes a Pareto front approximation composed of
a population of instances of single-objective DFO algorithms. These algorithms
use the same introduced comparison function relying on a shared Pareto front
approximation. The different instances of single-objective DFO algorithms are
collaborating and competing to improve the Pareto front approximation. Our ex-
periments comparing MOGEN with the state-of the-art Direct Multi-Search al-
gorithm on a large set of benchmarks shows the practicality of the approach,
allowing to obtain high quality Pareto fronts using a reasonably small amount of
function evaluations.

1 Introduction

Continuous optimization aims at minimizing a function f(x) with x ∈ Rn. When some
information is known about the derivatives of f , one generally uses gradient based
methods. For some other problems the function is black-box which means it can only
be evaluated (for instance the evaluation is the result of a complex simulation model).
Original algorithms have been imagined to optimize f by only relying on its evalua-
tion. This family of techniques is generally called derivative-free optimization (DFO).
One differentiates further the applicability of the derivative-free algorithms depending
whether or not the function evaluation is costly to evaluate. Genetic algorithms obtain
very good results for DFO benchmarks but they generally require a prohibitive number
of evaluations. Finally, in many practical applications, considering a single-objective
is not sufficient. In many cases, objectives are conflicting, which means they do not
share the same optimum. As such, dedicated multi-objective optimization methods aim
at finding a set of solutions being tradeoffs between the different objectives. This set of
tradeoffs is called the Pareto front. This is the context of this work: We are interested at
optimizing multi-objective black-box functions costly to evaluate providing to the user
a set of non-dominated points.
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Current state-of-the-art multi-objective optimization algorithms use the Pareto dom-
inance to determine if new points can be added to the current Pareto front approxima-
tion. Our first contribution is the definition of a comparison function allowing to com-
pare points with regards to a current Pareto front estimation.

Our second contribution is the definition of a framework, MOGEN, making use of
this comparison function to solve multi-objective optimization problems. This frame-
work uses derivative-free optimization single-objective algorithms (such as the Nelder-
Mead algorithm) in which we substitute our new comparison function to the classical
one. With this comparison function, these DFO single-objective algorithms are able
to identify directions to discover new points potentially improving the current Pareto
front optimization. This framework can be instantiated with several algorithms and per-
forms elitism such that algorithms bringing the most improvement to the Pareto front
approximation will be favoured. The aim of MOGEN is to solve multi-objective opti-
mization problems using a limited amount of evaluations; such behaviour is desired to
solve problems for which the evaluation is expensive in terms of computation time. For
example, problems where each evaluation requires a costly simulation could be solved
using MOGEN.

2 Background

A generic multi-objective optimization problem can be expressed as follows:

minimize F (X) ≡ {f1(X), . . . , fm(X)}
such that X ∈ Ω

(1)

where Ω ⊆ Rn is the feasible region and fi(X) are the objective functions. When m =
1, the problem is a single-objective optimization problem. For the rest of this paper,
we consider the feasible region Ω defines upper and lower bounds on each dimension.
In such case, X ∈ Ω can be translated as ∀ i ∈ {1, . . . , n} : xi ∈ [li, ui] such that
∀ i ∈ {1, . . . , n} : li < ui.

The Pareto dominance allows to evaluate if a point is better than another point with
regards to several objective functions. Considering two points x, y ∈ Ω, we say that
the point x dominates the point y on functions f1, . . . , fm, written x ≺ y, if the two
following conditions are satisfied:

x ≺ y ≡
{
∀ i ∈ {1, . . . ,m} : fi(x) ≤ fi(y)

∃ i ∈ {1, . . . ,m} : fi(x) < fi(y)

Alternative dominance definitions exist, as those proposed in [11], [15] and [2], but they
are not detailed in this article. These dominance definitions could also be used in the
framework we define.

A point x is said to be Pareto optimal if it satisfies the following condition:

@ y ∈ Ω : y ≺ x

The Pareto optimal set is defined as the set of Pareto optimal points, i.e. the set of
non-dominated points. Multi-objective optimization algorithms aim at finding an ap-
proximation of this Pareto optimal set.
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3 Derivative-Free Optimization

In this section, we recall the concept of Derivative-Free optimization methods. Three
popular DFO algorithms are described to illustrate this concept. These latter are used
by the MOGEN framework described later in this article.

3.1 Derivative-Free Optimization Methods

Derivative-free optimization methods, as defined in [3] and [12], are optimization search
techniques. These methods iteratively use comparisons between points to evaluate the
search progress. This iterative design with comparisons is rather intuitive and many
DFO algorithms rely on simple concepts and structures. The main advantage of these
methods is that the only information they need is the comparison of evaluations of the
objective functions.

DFO algorithms can be used to optimize black-box functions, i.e. functions for
which the only information available is its evaluation. In many practical applications, it
is desired to optimize black-box functions. There exists a huge range of single-objective
DFO algorithms; several of them being described in [3]. In the following sections, we
rapidly explain three single-objective DFO algorithms. These methods are designed to
solve single-objective problems as defined in Equation 1 with m = 1. If new points xi
are discovered outside the box defined by Ω, they are replaced by the closest points in
Ω to ensure the bound constraints are always respected.

The Directional Direct Search Algorithm The Directional Direct Search Algorithm
described in [3] converges to a local optimum by iteratively polling new points around
the current iterate which is a point in Ω. This algorithm relies on a collection of unit
vectors D and a step size α. At each iteration, for each direction di ∈ D, a new point
around the current iterate, xcurrent is created as follows: xi = xcurrent + α × di. If a
new point xi is discovered such that it is better than xcurrent, i.e. f(xi) ≤ f(xcurrent),
then xi becomes the new iterate and a new iteration can begin. If no better point has
been discovered at the end of an iteration, α is decreased. On the other hand, if the
iteration was successful, α is either maintained or increased. By replacing the current
iterate with better points, the algorithm eventually converges to a local minimum.

The Nelder-Mead Algorithm The Nelder-Mead algorithm introduced in [13] is a pop-
ular single-objective DFO algorithm. This algorithm converges to a local optimum by
iteratively applying transformations on a hypervolume (also called simplex). To solve a
problem in Ω ⊆ Rn, the Nelder-Mead algorithm uses a hypervolume containing n+ 1
points. These points y0, . . . , yn are sorted such that f(y0) ≤ f(y1) ≤ . . . ≤ f(yn−1) ≤
f(yn). At each iteration, the worst point yn is transformed into a new point y′n such that
f(y′n) ≤ f(yn). The transformations applied are, depending on the situation, reflec-
tion, expansion, inside and outside contraction. The Nelder-Mead transformations are
applied around the centroid of all the hypervolume points but the worst. A 2D example
of reflection of the worst point of a Nelder-Mead hypervolume is shown in Figure 1. In
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Fig. 1. Example of transformation of the worst point (y2) from an hypervolume of the Nelder-
Mead algorithm into its reflection (yr) over the centroid (yc).

this example, the centroid of points y0 and y1 is yc and the reflection of the worst point
y2 over the centroid is yr.

If transformations fail to produce a new point better than yn, the hypervolume is
shrunk around y0. By transforming the worst point of the hypervolume at each iteration,
all points contained in the hypervolume are increasing in terms of quality eventually
converging to a local minimum.

The MultiDirectional Search Algorithm The MultiDirectional Search algorithm in-
troduced in [7], similarly to the Nelder-Mead algorithm, applies transformation to a hy-
pervolume structure to converge to a local optimum. This hypervolume contains n+ 1
points to solve problems in Ω ⊆ Rn. These points y0, . . . , yn are sorted such that
f(y0) ≤ f(y1) ≤ . . . ≤ f(yn−1) ≤ f(yn). At each iteration, all points but the best
are transformed into new points y′i by applying transformations: reflection, expansion
(these are different from those of the Nelder-Mead algorithm since they are applied on
all points but the best of the hypervolume while only the worst point is transformed in
the Nelder-Mead algorithm). If at least one of the new point y′i is better than the for-
mer best point y0, then the iteration is a success. Otherwise, the hypervolume is shrunk
around y0. These successive transformations of the hypervolume eventually converge
to a local optimum.

3.2 The Comparison Step

DFO algorithms rely on comparisons of the objective evaluations to decide whether
a point allows the algorithm to progress and is worth to be kept. DFO methods need
a comparison function, cmp, to assess if a point is better than another one according
to the considered problem. For example, in the case of a minimization problem, the
comparison function used would be cmp<(x1, x2) ≡ f(x1) < f(x2). Indeed, if we
have f(x1) < f(x2) where f is the objective function, then x1 is better than x2 in order
to minimize f .

These comparison functions could be replaced by any comparison function accord-
ing to the type of problem considered. For example some industrial applications would
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require to minimize a non-deterministic function. In this case, the comparative function
< is not sufficient. Hypothesis tests would be more relevant as comparative functions.
As a consequence, it would be interesting to be able to adapt the comparison func-
tion used in a DFO search to the type of problem considered. DFO algorithms are
parametrized with a comparison function cmp(x1, x2) that returns a boolean which is
true if x1 is better than x2, false otherwise. A formal definition of the comparison func-
tion used in DFO algorithms can be expressed as follows:

cmp : Rn × Rn → B

A comparison function can be used in a DFO algorithm only if it is transitive. Using
a non-transitive comparison function could lead to a non-productive looping search.

By using a comparison function as a parameter for a DFO algorithm, it is possible to
solve different optimization problems declaratively. For example we could parametrize
the Nelder-Mead algorithm as follows: NM(f, cmp, x0) where f is the objective to op-
timize, cmp is the comparison function to use (e.g. the function cmp< declared earlier)
and x0 is the starting point.

4 Multi-Objective Optimization Comparison Function

In this section we define a comparison function between two points in a multi-objective
optimization context. The aim of this comparison function is to be used as a parameter in
any DFO algorithm. Multi-objective optimization search techniques tend to iteratively
improve their current approximation of the Pareto front. As stated in [5], the quality
of a Pareto front approximation can be measured in terms of two criteria. First, it is
desired that points in a Pareto front approximation are as close as possible to the optimal
Pareto front. Then, it is desired that points in a Pareto front approximation span the
whole optimal Pareto front. The approximation of a Pareto front inside a multi-objective
optimization algorithm is often referred to as an archive. An archive is a set of points
such that no point is dominating (nor dominated by) any other point in the set.

The classical way of comparing two points with respect to several objectives is
the Pareto dominance comparison function. In the context of an algorithm trying to
improve its current archive, it is not sufficient. For example, comparing two points x1
and x2 with the Pareto dominance, could determine that no point is better than the
other one (i.e. they don’t dominate each other). On the other hand, one of these points
could dominate more points in the archive. Therefore we introduce a new comparison
function using the Pareto dominance between two points but applying it additionally
to the whole archive. This comparison function compares two points x1 and x2 with
respect to an archive A.

We define dominates(x,A) as the set of points in A that x dominates. Similarly,
dominated(x,A) is the set of points inA by which x is dominated. From these two sets,
we define the quantity score(x,A) that represents the potential improvement brought
by x in the archive A.

dominates(x,A) = {y ∈ A | x ≺ y}
dominated(x,A) = {y ∈ A | y ≺ x}

score(x,A) = |dominates(x,A)| − |dominated(x,A)|
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The higher score(x,A) is, the more promising x is to be included in the archive A.
We base our comparison function cmp≺(A) on this definition of score. It compares
two points x1, x2 ∈ Rn with respect to a set of non-dominated points A ⊆ Rn and is
defined as follows:

cmp≺(A)(x1, x2) = score(x1, A
′) ≥ score(x2, A′) (2)

where A′ = A ∪ {x1, x2}. We use A′ instead of A to guarantee that cmp≺(A) is true
if x1 ≺ x2. Indeed, if the two points dominate or are dominated by the same number
of points in the archive A, we would have score(x1, A) = score(x2, A). In some
cases, even if we obtain the same result for the evaluation of the score function on
x1 and x2 with respect to A, x1 dominates x2, or vice versa. Figure 2 illustrates an
example where both x1 and x2 dominate all the points inA but x1 dominates x2. In this
situation, using the score function on A would not have been sufficient while using it
on A′ = A ∪ {x1, x2} would have shown that x1 ≺ x2.

f1

f2

y0

y1

y2

y3

x1

x2

Fig. 2. The score values are equivalent: score(x1, A) = |A|, score(x2, A) = |A| but x1 ≺ x2.
Need to use score with A′ = A ∪ {x1, x2}.

In [14], the transitivity of the Pareto dominance function is proven. It is then straight-
forward to prove that cmp≺(A) defined in Equation (2) is transitive and could be used
in DFO methods. cmp≺(A)(x1, x2) has the behaviour desired to solve multi-objective
optimization problems; it improves an archive A both in terms of distance to the real
Pareto front and in terms of spreading of the points within A.

The next section defines a framework using single-objective DFO algorithms with
cmp≺(A) to perform multi-objective optimization.

5 The MOGEN Algorithm

As stated in [4], most current state-of-the-art multi-objective optimization algorithms
are evolutionary/genetic algorithms. These algorithms provide Pareto front approxima-
tions of high quality both in terms of spreading and in terms of distance to the real
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Pareto front but at the cost of an important number of function evaluations [9]. In many
real world applications, the cost of evaluating the objective functions is too high to
make those techniques practicable. Alternative multi-objective optimization methods
should allow to find high quality Pareto front approximations using a small number of
evaluations of the objective functions. The MOGEN algorithm attempts to perform ef-
ficient multi-objective optimization search using a limited amount of evaluations of the
objective functions.

According to [4], only few multi-objective optimization search techniques which are
not evolutionary/genetic algorithms are efficient. In particular, the Direct Multi-Search
(DMS) algorithm introduced in [5] can be considered state-of-the-art. The Direct Multi-
Search algorithm has the particularity that its archive contains triplets (x,D, α) where
x is a point in the input space, D is a set of direction vectors and α is a real number. At
each iteration, a triplet (x,D, α) is selected and new points are computed for a subset of
d ∈ D with xnew = x+α×d. The new points are then inserted as triplets (xnew, D, α)
in the archive if they are not dominated (and dominated points are removed from the
archive).

The MOGEN algorithm described in Algorithm 1 follows a similar approach since
it associates to each point in the archive an algorithm and its current state of execu-
tion. MOGEN aims at using several single-objective DFO algorithms to perform multi-
objective optimization. In MOGEN, the single-objective DFO algorithms are used to
discover new points that are potentially inserted into a Pareto front approximation
shared by all the single-objective DFO algorithms used. It is possible to use these single-
objective DFO algorithms by modifying the comparison function they usually use such
that they favour points improving the shared Pareto front. All the data needed by an
algorithm to continue its execution starting from where it has stopped is enclosed in
its state of execution. This is illustrated on Figure 3. However MOGEN differs in two
ways:

1. It may use several single-objective DFO algorithms. In Figure 3, three different
DFO algorithms are used.

2. It uses the cmp≺(A) comparison function, focusing on the possible improvements
of the current archive.

To the best of our knowledge no other multi-objective optimization search method pro-
poses to use single-objective DFO algorithms. In MOGEN, several single-objective
DFO algorithms are in competition.

5.1 The Algorithm

The MOGEN algorithm described in Algorithm 1 takes several parameters as input.
The first parameter, F , is the set of functions to optimize. The second parameter, Ω, is
the feasible region of the considered problem. The third parameter, cmp, is the com-
parison function used by DFO algorithms to compare points. This comparison function
must be adapted to the type of problem considered (e.g. deterministic maximization,
stochastic minimization, . . .). In this article, we assume MOGEN uses the comparison
function cmp≺(A). The last parameter, M = {a1, . . . , am}, is a set of single-objective
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Fig. 3. An example of a MOGEN archive. The current state of execution is attached to each point
of the archive. For example, y1 is the best point of the simplex of a Nelder-Mead algorithm state.

Algorithm 1: MOGEN
Input: F A set of functions fi : Rn → R to optimize
Input: Ω The feasible region (Ω ⊆ Rn)
Input: cmp A comparison function
Input: M A set of DFO algorithms
Output: Arch A set of non-dominated points in Rn which is an approximation of the

Pareto front

1 Arch← InitArchive(M , Ω)
2 while stopping criterion not met do
3 (x, a, s)← SelectIterate(Arch)
4 (Ynew, snew)← Apply(x, a, s, cmp, Ω)
5 Arch← AddAndClean(Arch, Ynew, a, snew)

6 return Arch

derivative-free algorithms in which the comparison function cmp can be used. A sim-
plified version of MOGEN could consider the use of a single algorithm which would
be the same for every element in the archive.

The InitArchive function in Algorithm 1 at Line 1 initializes the archive as a
set of triplets (x, a, s) where x ∈ Ω, a is an algorithm from the set of algorithms M
and s is a state for the algorithm a in which x is the best point (according to cmp).
This state s is needed to be able to start a new iteration of the algorithm from where it
was paused before. The algorithm a considered can still remain a black-box algorithm;
it only has to be able to perform a single iteration on demand. After the initialization,
the elements in Arch are non-dominated points. Once Arch has been initialized, the
algorithm updates it iteratively until a stopping criterion is met. This stopping criterion
is somewhat arbitrary. Examples of stopping criteria are: a given number of iteration
has been reached, a given number of evaluations has been exceeded or the running time
of the algorithm exceeds a given threshold.

The first step performed at each iteration at Line 3 is the selection of a triplet
(x, a, s) in the archive as current iterate. The Apply function at Line 4 allows to per-
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form a single iteration of a DFO algorithm from a given state1. It takes five elements as
parameters. The first parameter is x, the best point of the state s. The second parameter,
a is the algorithm on which the iteration has to be performed. The third parameter is s,
the state from which the algorithm a begins its iteration. The fourth parameter, cmp, is
the comparison function used in a. The last parameter is Ω, the feasible region. Apply
returns two elements. The first one is Ynew, the set of new points discovered during the
iteration of a (the algorithm sometimes discovers multiple interesting points, for exam-
ple in the case of a Shrink of the Simplex in the Nelder-Mead algorithm). The second
one is snew, the new state reached after one iteration of a was performed starting from
state s.

Once Ynew has been computed, the function AddAndClean at Line 5 updates the
archive. It takes four arguments. The first argument is the current archive, Arch. The
second argument, Ynew, is the set of new points found by using the Apply function
with x, a, s, cmp and Ω. The third argument is the algorithm that was used to find the
points in Ynew and the fourth argument snew is the state of algorithm a in which new
points from Ynew were found. AddAndClean compares every point yi in Ynew with
elements from the archive. If an element in the archive is dominated by a point yi, it is
removed from Arch. If a point yi is not dominated by any point in the archive Arch, it
is added inArch as a triplet (yi, a, snew). When an element (yi, a, snew) is added to the
archive, the state of execution snew associated to yi is a clone of the state of execution
from which it was obtained; as such, each instance of the same algorithm in the archive
has its own state of execution that is not shared. When the stopping criterion is met, the
algorithm returns the current archive, Arch.

If we consider an archive containing triplets with several different DFO algorithms
ai, then MOGEN performs elitism on these algorithms. Indeed, an algorithm abad per-
forming poorly and failing to find a lot of new non-dominated points will generate
fewer new point triplets (xj , abad, sj) in the archive. On the opposite, an algorithm agood
with good performances discovering many new non-dominated points will generate
more new point triplets (xk, agood, sk) in the archive. Furthermore, the AddAndClean
function will clean points which are further from the optimal Pareto front. Triplets
(xj , abad, sj) obtained with algorithms failing to get closer to the optimal Pareto Front
will be eventually removed from the archive. Such algorithms will have less and less
triplet representatives and potentially disappear from the archive. On the opposite, algo-
rithms generating a lot of non-dominated points and getting closer to the optimal Pareto
front will have more and more triplets representatives. As such, the MOGEN algorithm
is elitist because it tends to use more and more often algorithms providing good results
and to use less and less often (or even abandon) algorithms providing poor results.

5.2 Running Example

Let us consider a small running example of the MOGEN algorithm. This bi-objective
problem has the following definition:

minimize F (x1, x2) ≡
{

(x1 − 1)2 + (x1 − x2)2), (x1 − x2)2 + (x2 − 3)2
}

such that x1, x2 ∈ Ω ≡ [−5, 5]

1 For instance a reflection operation applied to the simplex of a Nelder-Mead instance.
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We consider an initial archive containing only two triplets: one associated to the Nelder-
Mead algorithm and the other one to the Directional Direct Search algorithm. The
first triplet is (x0, NM, s0) where x0 = (2.0, 2.0), NM is the Nelder-Mead algo-
rithm and s0 = {x0 = (2.0, 2.0);x0,1 = (0.0, 2.0);x0,2 = (2.0, 0.0)} is the hy-
pervolume (also called simplex) structure (i.e. the state) of the Nelder-Mead algo-
rithm. This hypervolume is well sorted according to the cmp≺(A) since its evalua-
tions are: {F (x0) = (1.0, 1.0);F (x0,1) = (5.0, 5.0);x0,2 = (5.0, 13.0)}. The sec-
ond triplet is (x1, DDS, s1) where x1 = (0.75, 1.5), DDS is the Directional Direct
Search algorithm and s1 = (D1, alpha1) is the state of the DDS algorithm where
D1 = {(1, 0); (−1, 0); (0, 1); (0,−1)} is the collection of unit vectors and α1 = 0.5 is
the step size. The initial archive is thus Arch = {(x0, NM, s0), (x1, DDS, s1)}.

The first iteration begins with SelectIterate(Arch). For this example, we con-
sider that SelectIterate considers the archive as a FIFO queue; it selects the first
triplet in the archive. At the end of end of the iteration, the current iterate triplet is ap-
pended at the end of the archive with the new discovered points. The selected triplet is
(x0, NM, s0). The iteration continues with Apply(x0, NM, s0, cmpArch, Ω) that ap-
plies an iteration of the Nelder-Mead algorithm starting from state s0. The Nelder-Mead
algorithm applies a reflection and an internal contraction discovering the new point
xnew0 = (1.5, 1.0) which evaluations are F (xnew0 ) = (0.5, 4.25). The Apply func-
tion returns a pair (Y new

0 , snew0 ) where Y new
0 = {xnew0 = (1.5, 1.0)} is the set of new

points discovered and snew0 = {x0 = (2.0, 2.0);xnew0 = (1.5, 0.5);x0,1 = (0.0, 2.0)}
is the new hypervolume for the Nelder-Mead algorithm associated to x0. Then the it-
eration ends with AddAndClean(Arch, Y new

0 , NM, snew0 ) which inserts points from
Y new
0 in Arch such that they are associated to NM and snew0 . The new archive is thus
Arch = {(x1, DDS, s1), (xnew0 , NM, snew0 ), (x0, NM, snew0 )} at the end of the first
iteration.

The second iteration begins with SelectIterate(Arch) which returns the triplet
(x1, DDS, s1). Then, Apply(x1, DDS, s1, cmpArch0 , Ω) applies an iteration of the
Directional Direct Search algorithm starting from state s1. Polling discovers a new
point xnew1 = (1.25, 1.5) which evaluation is F (xnew1 ) = (0.125, 2.3125). The Apply
function returns a pair (Y new

1 , snew1 ) where Y new
1 = {xnew1 = (1.25, 1.5)} and snew1 =

(D1, α1 = 1.0). Finally, AddAndClean(Arch, Y new
1 , DDS, snew1 ) inserts points from

Y new
1 in Arch to obtain Arch = {(x0, NM, snew0 ), (xnew1 , DDS, snew1 )}. Note that
xnew0 and x1 have been removed from the archive since they were dominated by xnew1 .

6 Performance Assessment and Benchmarks

Intuitively it is desirable for a Pareto front estimation to contain points close to the
optimal Pareto front and representing a diversified subset of the optimal Pareto front.
Several measures exist to evaluate these two criteria (see in [17] and [16]). We present
only the purity and delta metrics both used in [5] to evaluate the state-of-the-art Direct
Multi-Search algorithm.
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6.1 The Purity Metric

The Purity metric defined in [1] allows to compare several Pareto front approximations
and define which one is the closest to the optimal Pareto front. Let us consider several
different multi-objective DFO algorithms. Let A be the set of archives Ai produced
by each algorithm i, and let Aglobal be the union of these archives Ai with dominated
points removed:

Aglobal =

{
u ∈

⋃
A
Ai

∣∣∣∣∣∀ v 6= u ∈
⋃
A
Ai : u ⊀ v

}

The Purity metric of an archive Ai ∈ A is then defined as the ratio of the number of
points in both Ai and Aglobal and the number of points in Aglobal:

Purity(Ai) =
|Ai ∩Aglobal|
|Aglobal|

The higher the Purity of an archive Ai is, the less points from Ai are dominated by
other archives and the closer Ai is to the optimal Pareto front. As mentioned in [5], two
similar solvers produce similar archives, which can decrease their performances for the
Purity metric since many points from these approximations will dominate each other.
Therefore a third solver could benefit from this effect and obtain a higher Purity metric
performance than the other two. To avoid this phenomenon, we only compare solvers
in pairs for the Purity metric.

6.2 The Delta Metric

The Delta metric, ∆, proposed in [6] and extended in [5], is a spreading metric like the
Gamma metric (Γ ) defined in [5]. The Γ metric is however ambiguous for problems
with more than two objectives. For a given archive, Fi is an objective space containing
k dimensions, the Delta metric ∆(Ai) is defined as follows:

∆(Ai) = max
j=1,...,n

(
δ0, j + δk, j +

∑k−1
i=1

∣∣δi, j − δ̄j∣∣
δ0, j + δk, j + (k − 1)δ̄j

)

where δ̄j for j = 1, . . . , n is the average of the distances δi, j = fi+1, j − fi, j with
i = 1, . . . , k−1 (assuming the objective function values have been sorted by increasing
value for each objective j). This metric allows to measure how well an archive is spread
along several objective dimensions.

6.3 Benchmark Problems

Our goal is to assess the performances of the MOGEN algorithm on a wide range of
multi-objective problems reported in the literature. We consider problems involving
bound constraints on each dimension, i.e. problems where the input space is contained
in a hyper-volume: Ω = [l, u] with l, u ∈ Rn and l < u.
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In [5], a collection of 100 problems with bound constraints from the literature was
modelled in AMPL (A Modelling Language for Mathematical Programming) [10]. This
collection of problems, available at http://www.mat.uc.pt/dms, contains a wide range of
problems with different dimensions and properties. We used this collection to assess the
performances of our algorithm.

The results obtained on these benchmarks for the Purity and the ∆ metrics are
reported graphically using performance profiles as in [8] and [5]. Let tp, s represent
the performance of the solver s ∈ S on the problem p such that lower values of
tp, s indicate better performance. The ratio of the performance is defined as follows:
rp, s =

tp, s
min{tp, s∗ |s∗∈S}

. A ratio rp, s = 1 means that solver s obtained the best value on

problem p. The performance profile ρs(τ) = 1
|P | × |{p ∈ P |rp, s ≤ τ}| is a cumulative

distribution of the performance of s compared to other solvers.

7 Results

Our results are divided in two parts. We first compare different MOGEN variants, then
we compare MOGEN to the Direct Multi-Search algorithm.

7.1 Comparison of MOGEN Variants

The MOGEN algorithm can be instantiated in several ways since it involves several
parameters and heuristics. We restrict our experimental comparison to different algo-
rithm sets in the initial archive; the other (meta-)parameters are fixed and described as
follows.

We decided to initialize all MOGEN variants with the Line Multiple Point Initial-
ization. It selects n equidistant points on the line connecting l and u, respectively the
lower and the upper bound of the input space Ω ⊆ Rn. The initial archive is defined as
follows: A0 = {l+ ( i

n−1 )(u− l)} where i = 0, . . . , n− 1. The results obtained in this
paper were all performed for n = 10 to ensure that all MOGEN variants start from the
same initial archive. To select the iterate at the beginning of each iteration, we apply the
(fair) First In First Out Queue selection heuristics. This means every iteration, a point
is popped from the queue, an iteration is performed and the point (and possibly the new
points found) is inserted back into the queue.

Finally, MOGEN variants may differ according the DFO algorithm associated with
each point in the initial archive. We consider four different versions of MOGEN with
the following algorithm proportions:

– MOGEN(NM) uses only the Nelder-Mead algorithm introduced in [13].
– MOGEN(DDS) uses only the Directional Direct Search algorithm as described in

[3].
– MOGEN(MDS) uses only the MultiDirectional Search algorithm introduced in

[7].
– MOGEN(ALL) uses the three algorithms described above; namely Nelder-Mead,

Directional Direct Search and MultiDirectional Search. These algorithms are rep-
resented in the initial archive in identical proportions.
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In Figure 4 we see the evolution of the average Purity metric on the benchmarks for
the four MOGEN variants. As can be observed, MOGEN(NM) outperforms the other
three variants. Even after a very small number of evaluations, MOGEN(NM) already
has a high average Purity metric. It remains the case after a larger number of evaluations.

In Figure 5 we see the performance profiles of the Purity metric for the four MO-
GEN variants with a maximum budget of 20,000 evaluations. The performance profiles
graph have to be read as follow: for a given solver s, a point on this graph in (τ, ρ(τ))
means that for a proportion ρ(τ) of the tested instances, the solver s was at worst τ
times worse than the best performance obtained on all solvers represented in the graph.
As such, the height ρ(τ) reached by a solver s in τ = 1 represents the proportion ρ(τ)
of instances on which solver s obtained the best performance among all represented
solvers. If the curve of a given solver s never reaches ρ(τ) = 1 but stops at ρ(τ) = r, it
means that the solver obtained an infinite performance ratio for a proportion (1− r) of
the instances.

As can be observed, MOGEN(NM) outperforms the three other variants. These
curves even show that MOGEN(NM) is very efficient. Indeed, for τ = 1, MOGEN(NM)
obtains the best metric value for more than 85% of the problems. MOGEN(NM) is also
very robust since it is able to find at least one non-dominated point for more than 95%
of the problems (i.e. there were less than 5% of the instances for which MOGEN(NM)
was not able to discover a single point in the global archive). MOGEN(ALL) is only the
second best. This could be explained by the fact that, eventually, points in the archive
associated to the MDS and DDS algorithms are dominated by points associated to NM,
leading to an increasing proportion of points associated to NM, performing better.

In Figure 6 we see the evolution of the average ∆ metric on the benchmarks for the
four MOGEN variants. As can be observed, MOGEN(NM) outperforms the other three
variants. Even after a very small number of evaluations, MOGEN(NM) already has a
low average ∆ metric. It remains the case after a larger number of evaluations as this
metric stabilizes after around 1,000 evaluations.

Figure 7 shows performance profiles of the Delta metric for the four MOGEN vari-
ants. For the ∆ metric, MOGEN(NM) seems to outperform the other variants. We can
also see that it is again the MOGEN(DDS) variants that seems to have the worst per-
formance for the ∆ metric while the MOGEN(MDS) and the MOGEN(ALL) variants
have similar performances. We can conclude that, according to the Purity and the ∆
metrics, MOGEN(NM) is the MOGEN variant showing the best performance.

7.2 Comparison of MOGEN and Direct Multi-Search

In [5], the authors show that the Direct Multi-Search (DMS) algorithm outperformed
state-of-the-art solvers. We compare the best MOGEN variant, MOGEN(NM), to DMS.
The parameters used for MOGEN(NM) are the same that those used to compare MO-
GEN variants. In Figure 8, we compare the purity metrics for MOGEN(NM) and the
DMS algorithm. MOGEN(NM) performs globally better than the DMS algorithm. In-
deed, the performance profile reveals that MOGEN(NM) has the best purity metric
value for more than 65% of the instances while the DMS algorithm only has the best
purity metric value for less than 40% of the instances. The fact that the DMS algorithm
seems to perform better than MOGEN(NM) for 8 instances between τ = 6 and τ = 100
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Fig. 4. Average Purity evolution - MOGEN
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Fig. 5. Purity performance profiles - MOGEN

only means that when the archive of DMS is largely dominated by another archive, it
tends to have a few more non-dominated points than MOGEN(NM).

Figure 7 shows performance profiles of the ∆ metric for the four MOGEN variants
and DMS. For the∆metric, DMS seems to outperform the MOGEN variants. However,
a solver can have a very good ∆ metric performance while its archive is completely
dominated by the archives of other solvers. As such, DMS seems to diversify more
than MOGEN(NM) but tends to produce archives dominated by those produced by
MOGEN(NM). Similarly to what is done in DMS, a search step could be added at the
beginning of each iteration of MOGEN to perform more diversification.
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Fig. 7. ∆ metric performance profiles
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Fig. 8. Purity performance profiles - MOGEN(NM) & DMS.

8 Conclusion
In this paper, we introduced a new comparison function, cmp≺(A), allowing to compare
points in a multi-objective optimization context with regards to an existing archive A.
We defined a new generic multi-objective optimization framework, MOGEN, that uses
single-objective DFO algorithms with cmp≺(A). Several MOGEN variants using dif-
ferent sets of DFO algorithms have been compared and the one with the Nelder-Mead
algorithm has obtained the best performances. The comparison between DMS and MO-
GEN revealed that the latter produces archives closer to the optimal Pareto front but
tends to be less diversified.

Several research directions could be explored as future work. It would be interesting
to use MOGEN with different comparison functions. Other algorithms could be used
in the algorithm as well and it is possible that other single-objective DFO algorithms
would improve greatly the performances obtained by MOGEN. The heuristics used in
this algorithm should also be studied to reveal how much they impact the produced
archive.
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